Publications by authors named "Manuela Schaper"

Objective: The inducible form of heat shock protein 70 is known to be overexpressed in tumors and seems to be necessary for the survival of tumor cells via an unknown mechanism. We therefore evaluated whether selective depletion of heat shock protein 70 induces cell death in lung cancer cells.

Methods: An adenovirus expressing antisense heat shock protein 70 and an adenovirus with beta-galactosidase were used for transduction of the lung cancer cell lines A549, NCI-H358, LXF-289, LOU-NH91, normal human bronchial epithelial cells, and normal lung fibroblasts IMR90.

View Article and Find Full Text PDF

Bacterial meningitis is a severe inflammatory disease of the central nervous system and is characterized by massive infiltration of granulocytes into the cerebrospinal fluid (CSF). To assess the role of NADPH oxidase-derived reactive oxygen species (ROS) in pneumococcal meningitis, mice deficient in either the gp91 subunit (essential for functioning of the phagocyte enzyme) or the p47 subunit (essential for functioning of homologous enzymes in nonphagocytic cells) were intracisternally infected with live Streptococcus pneumoniae, and defined disease parameters were measured during the acute stage of infection. While none of the parameters measured (including CSF bacterial titers) were significantly different in gp91(-/-) and wild-type mice, the infection in p47(-/-) mice was associated with significantly increased inflammation of the subarachnoid and ventricular space, disruption of the blood-brain barrier, and the presence of interleukin-1 beta, tumor necrosis factor alpha, and matrix metalloproteinase 9 in the cortex.

View Article and Find Full Text PDF

We have previously shown that antioxidants such as a-phenyl-tert-butyl nitrone or N-acetylcysteine attenuate cortical neuronal injury in infant rats with bacterial meningitis, suggesting that oxidative alterations play an important role in this disease. However, the precise mechanism(s) by which antioxidants inhibit this injury remain(s) unclear. We therefore studied the extent and location of protein oxidation in the brain using various biochemical and immunochemical methods.

View Article and Find Full Text PDF