Two-dimensional transition metal dichalcogenides, particularly MoS, are interesting materials for many applications in aerospace research, radiation therapy and bioscience more in general. Since in many of these applications MoS-based nanomaterials can be placed in an aqueous environment while exposed to ionizing radiation, both experimental and theoretical studies of their behaviour under these conditions is particularly interesting. Here, we study the effects of tiny imparted doses of 511 keV photons to MoS nanoflakes in water solution.
View Article and Find Full Text PDFAnthropogenic microfibers (mfs) are synthetic particles composed of cellulose (cotton, rayon, acetate, etc.) or petrochemical-based polymers (i.e.
View Article and Find Full Text PDFThe pursuit of environmentally friendly solvents has become an essential research topic in sustainable chemistry and nanomaterial science. With the need to substitute toxic solvents in nanofabrication processes becoming more pressing, the search for alternative solvents has taken on a crucial role in this field. Additionally, the use of toxic, non-economical organic solvents, such as N-methyl-2 pyrrolidone and dimethylformamide, is not suitable for all biomedical applications, even though these solvents are often considered as the best exfoliating agents for nanomaterial fabrication.
View Article and Find Full Text PDFStimulated Raman scattering in transparent glass-ceramics (TGCs) based on bulk nucleating phase BaNaNbO were investigated with the aim to explore the influence of micro- and nanoscale structural transformations on Raman gain. Nanostructured TGCs were synthesized, starting with 8BaO·15NaO·27NbO·50SiO (BaNaNS) glass, by proper nucleation and crystallization heat treatments. TGCs are composed of nanocrystals that are 10-15 nm in size, uniformly distributed in the residual glass matrix, with a crystallinity degree ranging from 30 up to 50% for samples subjected to different heat treatments.
View Article and Find Full Text PDFInteractions of novel bi-dimensional nanomaterials and live matter such as bacteria and viruses represent an extremely hot topic due to the unique properties of the innovative nanomaterials, capable in some cases to exhibit bactericide and antiviral actions. The interactions between bacteria and viruses and two dimensional nanosheets are here investigated. We extensively studied the interaction between a gram-negative bacterium, , and a gram-positive bacterium, , with two different types of 2D nanoflakes such as MoS, belonging to the Transition Metal Dichalcogenides family, and Graphene Oxide.
View Article and Find Full Text PDFThe green synthesis of highly conductive polyaniline by using two biological macromolecules, i.e laccase as biocatalyst, and DNA as template/dopant, was achieved in this work. laccase B (TvB) was found effective in oxidizing both aniline and its less toxic/mutagenic dimer N-phenyl-p-phenylenediamine (DANI) to conductive polyaniline.
View Article and Find Full Text PDFTwo dimensional materials beyond graphene such as MoS and WS are novel and interesting class of materials whose unique physico-chemical properties can be exploited in applications ranging from leading edge nanoelectronics to the frontiers between biomedicine and biotechnology. To unravel the potential of TMD crystals in biomedicine, control over their production through green and scalable routes in biocompatible solvents is critically important. Furthermore, considering multiple applications of eco-friendly 2D dispersions and their potential impact onto live matter, their toxicity and antimicrobial activity still remain an open issue.
View Article and Find Full Text PDFA novel method for the analysis of proteinaceous materials present on painted surfaces was developed by taking advantage of the adhesive ability of some fungal proteins which can form a stable and homogeneous layer on flexible transparency sheets able to capture trypsin in a fully active form. We demonstrated that the bioactive sheets were able to efficiently digest proteins, present as such, on surfaces of painted tests and historical samples, releasing peptides that can allow an easy and confident identification of the proteinaceous binders by standard bottom-up proteomic approach. By this method there is no need: (i) to transport the artifacts and (ii) to remove, even at micro level, a sample from the object.
View Article and Find Full Text PDFCorallinales (Rhodophyta) are high Mg-calcite macroalgae and are considered among the most vulnerable organisms to ocean acidification (OA). These sensitive species play fundamental roles in coastal systems as food source and settlement promoters as well as being involved in reef stabilization, and water carbonate balance. At present only a few studies are focused on erect calcifying macroalgae under low pH/high pCO and the contrasting results make difficult to predict the ecological consequences of the OA on the coralline algae.
View Article and Find Full Text PDFFourteen samples of tourmaline from the Real Museo Mineralogico of Federico II University (Naples) have been characterized through multi-methodological investigations (EMPA-WDS, SEM-EDS, LA-ICP-MS, and FT-IR spectroscopy). The samples show different size, morphology and color, and are often associated with other minerals. Data on major and minor elements allowed to identify and classify tourmalines as follows: elbaites, tsilaisite, schorl, dravites, uvites and rossmanite.
View Article and Find Full Text PDFAr-BIANH2 bearing different substituents on the aryl rings have been synthesized in high yield by reduction of the corresponding bis(aryl)acenaphthenequinonediimine (Ar-BIAN) compounds. The structure of p-CH3 C6 H4 -BIANH2 in the solid state was determined by X-ray diffraction. An exhaustive voltammetric investigation of the two parallel BIAN and BIANH2 series afforded a first rationalization of the redox properties of these molecules, highlighting their analogies with quinone/hydroquinone systems.
View Article and Find Full Text PDFIL-6 is a multifaceted pleiotropic cytokine, which is produced by a variety of cell types and targets different cells and tissues. In physiological conditions, IL-6 can be locally and transiently produced by skeletal muscle and plays an important role in muscle homeostasis. Circulating IL-6 levels are normally very low or undetectable but are dramatically increased in several pathologic conditions.
View Article and Find Full Text PDFAlthough adult skeletal muscle is composed of fully differentiated fibers, it retains the capacity to regenerate in response to injury and to modify its contractile and metabolic properties in response to changing demands. The major role in the growth, remodeling and regeneration is played by satellite cells, a quiescent population of myogenic precursor cells that reside between the basal lamina and plasmalemma and that are rapidly activated in response to appropriate stimuli. However, in pathologic conditions or during aging, the complete regenerative program can be precluded by fibrotic tissue formation and resulting in functional impairment of the skeletal muscle.
View Article and Find Full Text PDFA linear, amphoteric poly(amidoamine) nicknamed AGMA1, based on 4-aminobutylguanidine, or agmatine, was successfully prepared by Michael-type polyaddition of monoprotonated agmatine and 2,2-bis(acrylamido)acetic acid (BAC). Copolymers between AGMA1 and the biocompatible poly(amidoamine) ISA23 (deriving from the polyaddition of 2-methylpiperazine with BAC) were also prepared. Acid-base titrations gave for AGMA1 three acid dissociation constants, with pKa values of 2.
View Article and Find Full Text PDF