Publications by authors named "Manuela Piazza"

To understand a visual scene, observers need to both recognize objects and encode relational structure. For example, a scene comprising three apples requires the observer to encode concepts of "apple" and "three." In the primate brain, these functions rely on dual (ventral and dorsal) processing streams.

View Article and Find Full Text PDF

Children appear to have some arithmetic abilities before formal instruction in school, but the extent of these abilities as well as the mechanisms underlying them are poorly understood. Over two studies, an initial exploratory study of preschool children in the U.S.

View Article and Find Full Text PDF

Preverbal infants spontaneously represent the number of objects in collections. Is this 'sense of number' (also referred to as Approximate Number System, ANS) part of the cognitive foundations of mathematical skills? Multiple studies reported a correlation between the ANS and mathematical achievement in children. However, some have suggested that such correlation might be mediated by general-purpose inhibitory skills.

View Article and Find Full Text PDF

Inter-individual differences in infants' numerosity processing have been assessed using a change detection paradigm, where participants were presented with two concurrent streams of images, one alternating between two numerosities and the other showing one constant numerosity. While most infants look longer at the changing stream in this paradigm, the reasons underlying these preferences have remained unclear. We suggest that, besides being attracted by numerosity changes, infants perhaps also respond to the alternating pattern of the changing stream.

View Article and Find Full Text PDF

A converging body of evidence from neuroimaging, behavioral, and neuropsychology studies suggests that different arithmetic operations rely on distinct neuro-cognitive processes: while addition and subtraction may rely more on visuospatial reasoning, multiplication would depend more on verbal abilities. In this paper, we tested this hypothesis in a longitudinal study measuring language and visuospatial skills in 358 preschoolers, and testing their mental calculation skills at the beginning of middle school. Language skills at 5.

View Article and Find Full Text PDF

Humans can quickly approximate how many objects are in a visual image, but no clear consensus has been achieved on the cognitive resources underlying this ability. Previous work has lent support to the notion that mechanisms which explicitly represent the locations of multiple objects in the visual scene within a mental map are critical for both visuo-spatial working memory and enumeration (at least for relatively small numbers of items). Regarding the cognitive underpinnings of large numerosity perception, an issue currently subject to much controversy is why numerosity estimates are often non-veridical (i.

View Article and Find Full Text PDF

When humans mentally "navigate" bidimensional uniform conceptual spaces, they recruit the same grid-like and distance codes typically evoked when exploring the physical environment. Here, using fMRI, we show evidence that conceptual navigation also elicits another kind of spatial code: that of absolute direction. This code is mostly localized in the medial parietal cortex, where its strength predicts participants' comparative semantic judgments.

View Article and Find Full Text PDF

Numeracy is of critical importance for scholastic success and modern-day living, but the precise mechanisms that drive its development are poorly understood. Here we used novel experimental training methods to begin to investigate the role of symbols in the development of numeracy in preschool-aged children. We assigned pre-school children in the U.

View Article and Find Full Text PDF

When primates (both human and non-human) learn to categorize simple visual or acoustic stimuli by means of non-verbal matching tasks, two types of changes occur in their brain: early sensory cortices increase the precision with which they encode sensory information, and parietal and lateral prefrontal cortices develop a categorical response to the stimuli. Contrary to non-human animals, however, our species mostly constructs categories using linguistic labels. Moreover, we naturally tend to define categories by means of multiple sensory features of the stimuli.

View Article and Find Full Text PDF

A fundamental skill of an intelligent mind is that of being able to rapidly discover the structural organization underlying the relations across the objects or the events in the world. Humans, thanks to language, master this skill. For example, a child learning that dolphins and cats can also be referred to as mammals, not only will infer the presence of a hierarchical organization for which dolphins and cats are subordinate exemplars of the category mammals, but will also derive that dolphins are, at least at one conceptual level, more similar to cats than to sharks, despite their indisputable higher perceptual similarity to the latter.

View Article and Find Full Text PDF

Relational information about items in memory is thought to be represented in our brain thanks to an internal comprehensive model, also referred to as a "cognitive map". In the human neuroimaging literature, two signatures of bi-dimensional cognitive maps have been reported: the grid-like code and the distance-dependent code. While these kinds of representation were previously observed during spatial navigation and, more recently, during processing of perceptual stimuli, it is still an open question whether they also underlie the representation of the most basic items of language: words.

View Article and Find Full Text PDF

It is believed that the approximate estimation of large sets and the exact quantification of small sets (subitizing) are supported by two different systems, the Approximate Number System (ANS) and Object Tracking System (OTS), respectively. It is a current matter of debate whether they are both impaired in developmental dyscalculia (DD), a specific learning disability in symbolic number processing and calculation. Here we tackled this question by asking 32 DD children and 32 controls to perform a series of tasks on visually presented sets, including exact enumeration of small sets as well as comparison of large, uncountable sets.

View Article and Find Full Text PDF

We present an extension of the Individual Brain Charting dataset -a high spatial-resolution, multi-task, functional Magnetic Resonance Imaging dataset, intended to support the investigation on the functional principles governing cognition in the human brain. The concomitant data acquisition from the same 12 participants, in the same environment, allows to obtain in the long run finer cognitive topographies, free from inter-subject and inter-site variability. This second release provides more data from psychological domains present in the first release, and also yields data featuring new ones.

View Article and Find Full Text PDF

Developmental dyscalculia (DD) is a developmental learning disability that manifests as a persistent difficulty in comprehending even the most basic numeric and arithmetic concepts, despite normal intelligence and schooling opportunities. Given the predominant use of numbers in modern society, this condition can pose major challenges in the sufferer's everyday life, both in personal and professional development. Since, to date, we still lack a universally recognized and psychometrically driven definition of DD, its diagnosis has been applied to a wide variety of cognitive profiles.

View Article and Find Full Text PDF

Visual crowding refers to the inability to identify objects when surrounded by other similar items. Crowding-like mechanisms are thought to play a key role in numerical perception by determining the sensory mechanisms through which ensembles are perceived. Enhanced visual crowding might hence prevent the normal development of a system involved in segregating and perceiving discrete numbers of items and ultimately the acquisition of more abstract numerical skills.

View Article and Find Full Text PDF

We investigated 10-month-old infants' and adults' numerical expectations in scenarios where information on self-motion and static object features may give rise to numerically incongruent representations. A red circle or a blue box with yellow stripes appeared on the left side of a screen, moved autonomously sideways and then moved back behind the screen. Next, on the opposite side, an identical object was first brought in view by a hand and then pushed back behind the screen (Experiments 1 and 2).

View Article and Find Full Text PDF

A recent proposal posits that humans might use the same neuronal machinery to support the representation of both spatial and nonspatial information, organizing concepts and memories using spatial codes. This view predicts that the same neuronal coding schemes characterizing navigation in the physical space (tuned to distance and direction) should underlie navigation of abstract semantic spaces, even if they are categorical and labeled by symbols. We constructed an artificial semantic environment by parsing a bidimensional audiovisual object space into four labeled categories.

View Article and Find Full Text PDF

Humans and other animals base important decisions on estimates of number, and intraparietal cortex is thought to provide a crucial substrate of this ability. However, it remains debated whether an independent neuronal processing mechanism underlies this 'number sense', or whether number is instead judged indirectly on the basis of other quantitative features. We performed high-resolution 7 Tesla fMRI while adult human volunteers attended either to the numerosity or an orthogonal dimension (average item size) of visual dot arrays.

View Article and Find Full Text PDF

Humans are endowed with an exceptional ability for detecting faces, a competence that, in adults, is supported by a set of face-specific cortical patches. Human newborns, already shortly after birth, preferentially orient to faces, even when they are presented in the form of highly schematic geometrical patterns vs. perceptually equivalent nonfacelike stimuli.

View Article and Find Full Text PDF

Dyscalculia, a specific learning disability that impacts arithmetical skills, has previously been associated to a deficit in the precision of the system that estimates the approximate number of objects in visual scenes (the so called 'number sense' system). However, because in tasks involving numerosity comparisons dyscalculics' judgements appears disproportionally affected by continuous quantitative dimensions (such as the size of the items), an alternative view linked dyscalculia to a domain-general difficulty in inhibiting task-irrelevant responses. To arbitrate between these views, we evaluated the degree of reciprocal interference between numerical and non-numerical quantitative dimensions in adult dyscalculics and matched controls.

View Article and Find Full Text PDF

A current intense discussion in numerical cognition concerns the relationship between the processing of numerosity and other non-numerical quantities. In particular, it is a matter of debate whether number and other quantities (e.g.

View Article and Find Full Text PDF

In this study, we investigate the mental representation of non-numerical quantifiers ("some", "many", "all", etc.) by comparing their use in abstract and in grounded perceptual contexts. Using an approach similar to that used in the number domain, we test whether (and to what extent) such representation is constrained by the way we perceive the world through our senses.

View Article and Find Full Text PDF

Elementary arithmetic is highly prevalent in our daily lives. However, despite decades of research, we are only beginning to understand how the brain solves simple calculations. Here, we applied machine learning techniques to magnetoencephalography (MEG) signals in an effort to decompose the successive processing stages and mental transformations underlying elementary arithmetic.

View Article and Find Full Text PDF

A single word (the noun "") encapsulates a complex multidimensional meaning, including both perceptual ("", "", "") and conceptual ("", "") features. Opposing theories make different predictions as to whether different features (also conceivable as dimensions of the semantic space) are stored in similar neural regions and recovered with similar temporal dynamics during word reading. In this magnetoencephalography study, we tracked the brain activity of healthy human participants while reading single words varying orthogonally across three semantic dimensions: two perceptual ones (i.

View Article and Find Full Text PDF

With age and education, children become increasingly accurate in processing numerosity. This developmental trend is often interpreted as a progressive refinement of the mental representation of number. Here we provide empirical and theoretical support for an alternative possibility, the filtering hypothesis, which proposes that development primarily affects the ability to focus on the relevant dimension of number and to avoid interference from irrelevant but often co-varying quantitative dimensions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioneghjslu563ub82l44vef4nedrmm4qpem): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once