Publications by authors named "Manuela Nania"

While polyamide (PA) membranes are widespread in water purification and desalination by reverse osmosis, a molecular-level understanding of the dynamics of both confined water and polymer matrix remains elusive. Despite the dense hierarchical structure of PA membranes formed by interfacial polymerization, previous studies suggest that water diffusion remains largely unchanged with respect to bulk water. Here, we employ neutron spectroscopy to investigate PA membranes under precise hydration conditions, and a series of isotopic contrasts, to elucidate water transport and polymer relaxation, spanning ps-ns timescales, and Å-nm lengthscales.

View Article and Find Full Text PDF

Septins are cytoskeletal filaments that assemble at the inner face of the plasma membrane. They are localized at constriction sites and impact membrane remodeling. We report in vitro tools to examine how yeast septins behave on curved and deformable membranes.

View Article and Find Full Text PDF

We demonstrate nanoscale wrinkling on polydimethylsiloxane (PDMS) at sub-100 nm length scales via a (double) frontal surface oxidation coupled with a mechanical compression. The kinetics of the glassy skin propagation is resolved by neutron and X-ray reflectivity, and atomic force microscopy, combined with mechanical wrinkling experiments to evaluate the resulting pattern formation. In conventional PDMS surface oxidation, the smallest wrinkling patterns attainable have an intrinsic lower wavelength limit due to the coupling of skin formation and front propagation at fixed strain ε, whose maximum is, in turn, set by material failure.

View Article and Find Full Text PDF

The structure and flow behavior of a concentrated aqueous solution (45 wt %) of the ubiquitous linear sodium alkylbenzenesulfonate (NaLAS) surfactant is investigated by microfluidic small-angle X-ray scattering (SAXS) at 70 °C. NaLAS is an intrinsically complex mixture of over 20 surfactant molecules, presenting coexisting micellar (L1) and lamellar (Lα) phases. Novel microfluidic devices were fabricated to ensure pressure and thermal resistance, ability to handle viscous fluids, and low SAXS background.

View Article and Find Full Text PDF

We report a time-resolved approach to probe the mechanical properties of thin films during drying and solidification based on surface wrinkling. The approach is demonstrated by measuring the modulus of a ternary system comprising an inorganic salt (aluminum chlorohydrate), a humectant (glycerol), and water across the glassy film formation pathway. The topography of mechanically induced wrinkling of supported films on polydimethylsiloxane (PDMS) is experimentally monitored during mechanical extension and relaxation cycles.

View Article and Find Full Text PDF

We study the surface oxidation of polydimethylsiloxane (PDMS) by air plasma exposure and its implications for the mechanically-induced surface wrinkling of the resulting glass-elastomer bilayers. The effect of plasma frequency (kHz and MHz), oxygen content (from O2 to air), pressure (0.5 ≤ P ≤ 1.

View Article and Find Full Text PDF

Vibrating tube densimeters are well-established tools for measuring fluid densities precisely at elevated temperatures and pressures. However, the conventional method of calibrating them utilises a model in which the apparatus parameters are represented as polynomials of temperature and pressure that contain a variable number of terms. Here a robust, physically-based model is presented and demonstrated for six different instruments at temperatures from (273 to 473) K, pressures from (0 to 140) MPa, and densities from (0 to 1050) kg m(-3).

View Article and Find Full Text PDF