Approaches utilizing multiple analysis techniques on a single sample are highly desirable in research, especially to reduce the number of animals and obtain the maximum information. Golgi-Cox staining is a widely used method for characterizing axon and dendritic morphology and several attempts to combine this technique with immunofluorescence and transmission electron microscopy have been proposed. With few exceptions, most of the protocols were characterized by a high degree of complexity and low reproducibility.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2020
The regrowth of severed axons is fundamental to reestablish motor control after spinal-cord injury (SCI). Ongoing efforts to promote axonal regeneration after SCI have involved multiple strategies that have been only partially successful. Our study introduces an artificial carbon-nanotube based scaffold that, once implanted in SCI rats, improves motor function recovery.
View Article and Find Full Text PDFPeptides constituted of backbone homologated α-amino acids combined with carbon materials offer interesting possibilities in the modulation of cellular functions. In this work, we have prepared diphenylalanine β- and γ-peptides and conjugated them to carbon nanotubes (CNTs). These hybrids were able to self-assemble into fibrillar dendritic structures enabling the growth of primary hippocampal cells and the modulation of their neuronal functions.
View Article and Find Full Text PDFChronic exposure to high circulating levels of glucocorticoids (GCs) may be a key risk factor for Alzheimer's Disease (AD) development and progression. In addition, hyper-activation of glucocorticoid receptors (GRs) induces brain alterations comparable to those produced by AD. In transgenic mouse models of AD, GCs increase the production of the most important and typical hallmarks of this dementia such as: Aβ40, Aβ42 and tau protein (both the total tau and its hyperphosphorylated isoforms).
View Article and Find Full Text PDFBackground: Synaptic dysfunction, named synaptopathy, due to inflammatory status of the central nervous system (CNS) is a recognized factor potentially underlying both motor and cognitive dysfunctions in neurodegenerative diseases. To gain knowledge on the mechanistic interplay between local inflammation and synapse changes, we compared two diverse inflammatory paradigms, a cytokine cocktail (CKs; IL-1β, TNF-α, and GM-CSF) and LPS, and their ability to tune GABAergic current duration in spinal cord cultured circuits.
Methods: We exploit spinal organotypic cultures, single-cell electrophysiology, immunocytochemistry, and confocal microscopy to explore synaptic currents and resident neuroglia reactivity upon CK or LPS incubation.
Synapses compute and transmit information to connect neural circuits and are at the basis of brain operations. Alterations in their function contribute to a vast range of neuropsychiatric and neurodegenerative disorders and synapse-based therapeutic intervention, such as selective inhibition of synaptic transmission, may significantly help against serious pathologies. Graphene is a two-dimensional nanomaterial largely exploited in multiple domains of science and technology, including biomedical applications.
View Article and Find Full Text PDFUnlabelled: Current strategies in Central Nervous System (CNS) repair focus on the engineering of artificial scaffolds for guiding and promoting neuronal tissue regrowth. Ideally, one should combine such synthetic structures with stem cell therapies, encapsulating progenitor cells and instructing their differentiation and growth. We used developments in the design, synthesis, and characterization of polysaccharide-based bioactive polymeric materials for testing the ideal composite supporting neuronal network growth, synapse formation and stem cell differentiation into neurons and motor neurons.
View Article and Find Full Text PDFIn modern neuroscience, significant progress in developing structural scaffolds integrated with the brain is provided by the increasing use of nanomaterials. We show that a multiwalled carbon nanotube self-standing framework, consisting of a three-dimensional (3D) mesh of interconnected, conductive, pure carbon nanotubes, can guide the formation of neural webs in vitro where the spontaneous regrowth of neurite bundles is molded into a dense random net. This morphology of the fiber regrowth shaped by the 3D structure supports the successful reconnection of segregated spinal cord segments.
View Article and Find Full Text PDFKey Points: Increased environmental risk factors in conjunction with genetic susceptibility have been proposed with respect to the remarkable variations in mortality in amyotrophic lateral sclerosis (ALS). In vitro models allow the investigation of the genetically modified counter-regulator of motoneuron toxicity and may help in addressing ALS therapy. Spinal organotypic slice cultures from a mutant form of human superoxide dismutase 1 (SOD1G93A) mouse model of ALS allow the detection of altered glycinergic inhibition in spinal microcircuits.
View Article and Find Full Text PDF