Significant advancements in the field of preclinical in vitro blood-brain barrier (BBB) models have been achieved in recent years, by developing monolayer-based culture systems towards complex multi-cellular assays. The coupling of those models with other relevant organoid systems to integrate the investigation of blood-brain barrier permeation in the larger picture of drug distribution and metabolization is still missing. Here, we report for the first time the combination of a human induced pluripotent stem cell (hiPSC)-derived blood-brain barrier model with a cortical brain and a liver spheroid model from the same donor in a closed microfluidic system (MPS).
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a malignant disease of immature myeloid cells and the most prevalent acute leukemia among adults. The oncogenic homo-tetrameric fusion protein RUNX1/ETO results from the chromosomal translocation t(8;21) and is found in AML patients. The nervy homology region 2 (NHR2) domain of ETO mediates tetramerization; this oligomerization is essential for oncogenic activity.
View Article and Find Full Text PDFParabens are alkyl esters of 4-hydroxybenzoic acid (4-HBA), with short-chain parabens used as antimicrobials in cosmetics. We investigated the impact of chain structure on skin and liver metabolism. Incubations with primary human hepatocytes and human liver S9 indicated that methyl-, ethyl-, propyl- and butylparaben were rapidly metabolized to similar metabolites, including 4-HBA plus the corresponding alcohols.
View Article and Find Full Text PDFIntroduction: Primary human hepatocytes are considered as a highly predictive in vitro model for preclinical drug metabolism studies. Due to the limited availability of human liver tissue for cell isolation, there is a need of alternative cell sources for pharmaceutical research.
Methods: In this study, the metabolic activity and long-term stability of the human hepatoma cell line HepaRG were investigated in comparison to primary human hepatocytes (pHH).
A dynamic respiration assay based on luminescence decay time detection of oxygen for high throughput toxicological assessment is presented. The method uses 24-well plates (OxoDishes) read with the help of a sensor dish reader placed in a humidified CO(2)-incubator. Adherent primary rat hepatocytes and the human hepatic cell line Hep G2 were exposed to known toxic compounds.
View Article and Find Full Text PDF