Publications by authors named "Manuela Lasagna"

Groundwater (GW) is sensitive to climate change (CC), and the effects have become progressively more evident in recent years. Many studies have examined the effects of CC on GW quantity. Still, there is growing interest in assessing the qualitative impacts of CC, especially on GW temperature (GWT), and the consequences of these impacts.

View Article and Find Full Text PDF

Asbestos is widely recognized as being a carcinogen when dispersed in air, but very little is known about its exposure pathways in water and its subsequent effects on human health. Several studies have proved asbestos presence in groundwater but failed to assess its mobility in aquifer systems. This paper aims to fill this gap by studying the transport of crocidolite, an amphibole asbestos, through sandy porous media mimicking different aquifer systems.

View Article and Find Full Text PDF

Asbestos occurrence has been mainly monitored in air so far and only limitedly considered in other matrices, such as water. Waterborne asbestos could originate from natural or anthropogenic sources, leading to non-conventional exposure scenarios. It could be a secondary source of airborne asbestos in case of water-to-air migration, particularly in case of surface moving water, such as in rivers and streams.

View Article and Find Full Text PDF

Monitoring and analysis of groundwater level (GWL) in space and time is one of the tools used to evaluate the quantitative status of groundwater (GW) resources and identify possible alterations and critical cases due to climate change and variability, anthropogenic influences and other driving factors. In this study, four statistical methodologies (trend, change-point, percentile and non-standardized anomaly analyses) were applied for GWL and rainfall (R) analysis in the Piedmont Plain (western Po Plain, NW Italy). To detect the interannual variations in the GW maximum annual amplitude, the coefficient of variation was also used.

View Article and Find Full Text PDF

In Naturally Occurring Asbestos (NOA) rich areas, water flows through asbestos bearing rocks and soils and generates waterborne fibres that may migrate in air and become a risk for humans. Research on the migration and dispersion after water vaporisation has been so far only marginally evaluated. This study investigates the migration in air of asbestos from a set of suspensions contaminated by chrysotile from Balangero (Italy), under controlled laboratory conditions.

View Article and Find Full Text PDF

In the context of global climate change, understanding the relationships between climate and groundwater is increasingly important. This study in the NW Alps represents the first regional-scale investigation of the groundwater feature variation in mountain aquifers due to climate variability. The analysis of groundwater temperature and discharge in 28 natural mineral water springs and meteorological parameters (rainfall and air temperature) permitted us to evaluate the annual behaviour and possible trends of these parameters during the period from 2001 to 2018.

View Article and Find Full Text PDF

Water table level monitoring and analysis are among the tools available to identify variations in the quantitative state of groundwater. Moreover, these levels highlight the response of groundwater to climate change and other global change drivers, including land use changes. In this study, water table level (37 monitoring wells) and rainfall (30 rain gauges) data analyses were performed in an alluvial unconfined aquifer in the Piedmont Plain (NW Italy) for the 2002-2017 period.

View Article and Find Full Text PDF

Abandoned mine sites continue to present serious environmental hazards because the heavy metals associated with extractive waste are continuously released into the environment, where they threaten human life and the environment. Remediating and securing extractive waste are complex, lengthy and costly processes. Thus, in most European countries, a site is considered for intervention when it poses a risk to human health and the surrounding environment.

View Article and Find Full Text PDF

Diffuse nitrate pollution in groundwater is currently considered one of the major causes of water quality degradation. Determining the sources of nitrate contamination is an important first step for a better management of water quality. Thus, the isotopic composition of nitrate (δN and δO) and boron (δB) were used to evaluate nitrate contamination sources and to identify geochemical processes occurring in the shallow and deep aquifers of the Turin-Cuneo plain (NW Italy).

View Article and Find Full Text PDF

Nitrate is a worldwide pollutant in aquifers. Shallow aquifer nitrate concentrations generally display vertical stratification, with a maximum concentration immediately below the water level. The concentration then gradually decreases with depth.

View Article and Find Full Text PDF