Different screening methods are being developed to generate adeno-associated viral vectors (AAV) with the ability to bypass the blood-brain barrier (BBB) upon intravenous administration. Recently, the AAV9P31 stood out as the most efficient version among a library of peptide-displaying capsids selected in C57BL/6 mice using RNA-driven biopanning. In this work we have characterized in detail its biodistribution in different mouse strains (C57BL/6 and Balb/c), as well as in Sprague Dawley rats and non-human primates (Macaca fascicularis).
View Article and Find Full Text PDFThe SCN1A gene encodes the alpha subunit of a voltage-gated sodium channel (Na1.1), which is essential for the function of inhibitory neurons in the brain. Mutations in this gene cause severe encephalopathies such as Dravet syndrome (DS).
View Article and Find Full Text PDFBackground And Aims: High-capacity adenoviral vectors (HC-AdV) show extended DNA payload and stability of gene expression in vivo due to the absence of viral coding sequences. However, production requires methods to trans-complement viral proteins, usually through Helper Viruses (HV). The Cre/loxP system is frequently employed to remove the packaging signal in HV genomes, in order to avoid their encapsidation.
View Article and Find Full Text PDFDravet syndrome is a genetic encephalopathy characterized by severe epilepsy combined with motor, cognitive, and behavioral abnormalities. Current antiepileptic drugs achieve only partial control of seizures and provide little benefit on the patient's neurological development. In >80% of cases, the disease is caused by haploinsufficiency of the gene, which encodes the alpha subunit of the Nav1.
View Article and Find Full Text PDFCerebrotendinous xanthomatosis (CTX) is an autosomal recessive disease caused by mutations in the gene, encoding the sterol 27-hydroxylase. Disruption of the bile acid biosynthesis pathway and accumulation of toxic precursors such as cholestanol cause chronic diarrhea, bilateral juvenile cataracts, tissue deposition of cholestanol and cholesterol (xanthomas), and progressive motor/neuropsychiatric alterations. We have evaluated the therapeutic potential of adeno-associated virus (AAV) vectors expressing in a CTX mouse model.
View Article and Find Full Text PDFInt J Mol Sci
April 2021
Immune checkpoint inhibitors (ICIs) have demonstrated remarkable efficacy in a growing number of malignancies. However, overcoming primary or secondary resistances is difficult due to pharmacokinetics issues and side effects associated with high systemic exposure. Local or regional expression of monoclonal antibodies (mAbs) using gene therapy vectors can alleviate this problem.
View Article and Find Full Text PDFCytokines are small proteins that are crucial for controlling the growth and activity of blood cells and other cells of the immune system [...
View Article and Find Full Text PDFOsteosarcoma is the most frequent and aggressive bone tumor in children and adolescents, with a long-term survival rate of 30%. Interleukin-12 (IL-12) is a potent cytokine that bridges innate and adaptive immunity, triggers antiangiogenic responses, and achieves potent antitumor effects. In this work, we evaluated the antisarcoma effect of a high-capacity adenoviral vector encoding mouse IL-12.
View Article and Find Full Text PDFSeveral dinucleotide cyclases, including cyclic GMP-AMP synthase, and their involvement in STING-mediated immunity have been extensively studied. In this study, we tested five bacterial diguanylate cyclases from the Gram-negative bacterium Enteritidis, identifying AdrA as the most potent inducer of a STING-mediated IFN response. AdrA wild-type (wt) or its inactive version AdrA mutant (mut) were delivered by an adenovirus (Ad) vector.
View Article and Find Full Text PDFThe adaptation of adenoviruses as gene delivery tools has resulted in the development of high-capacity adenoviral vectors (HC-AdVs), also known, helper-dependent or "gutless". Compared with earlier generations (E1/E3-deleted vectors), HC-AdVs retain relevant features such as genetic stability, remarkable efficacy of in vivo transduction, and production at high titers. More importantly, the lack of viral coding sequences in the genomes of HC-AdVs extends the cloning capacity up to 37 Kb, and allows long-term episomal persistence of transgenes in non-dividing cells.
View Article and Find Full Text PDFViral vector use is wide-spread in the field of gene therapy, with new clinical trials starting every year for different human pathologies and a growing number of agents being approved by regulatory agencies. However, preclinical testing is long and expensive, especially during the early stages of development. Nowadays, the model organism par excellence is the mouse (), and there are few investigations in which alternative models are used.
View Article and Find Full Text PDFIL-8 (CXCL-8) is a chemoattractant factor for myeloid leukocytes, that is produced in large quantities by many solid tumors. Levels of IL-8, which can act upon a variety of immune and nonimmune cells, can tell us a lot about tumors, including their size (positive association) and how likely they are to respond to immunotherapy (negative association). This is because the IL-8 produced by tumors can promote angiogenesis, recruit immunosuppressive cells like neutrophils and myeloid-derived suppressor cells (MDSCs), and stimulate epithelial-to-mesenchymal transition, which is a precursor to metastasis.
View Article and Find Full Text PDFDravet Syndrome (DS) is an encephalopathy with epilepsy associated with multiple neuropsychiatric comorbidities. In up to 90% of cases, it is caused by functional happloinsufficiency of the SCN1A gene, which encodes the alpha subunit of a voltage-dependent sodium channel (Nav1.1).
View Article and Find Full Text PDFIn this review, we will highlight several studies that revolve around interleukin-8 (IL-8) and show the multiple facets that could take in the tumor microenvironment. Chemokines that attract neutrophils (to a large extent, IL-8) can have a bimodal behavior inducing the migration of them in the first place and later favoring the formation of NETs in the place of emission focus of the chemokine. Also, this mechanism occurs when neutrophils migrate to tumor cells and where the extrusion of NETs in the tumor is observed.
View Article and Find Full Text PDFThe repurposing of drugs approved by the regulatory agencies for other indications is emerging as a valuable alternative for the development of new antimicrobial therapies, involving lower risks and costs than the de novo development of novel antimicrobial drugs. Adenovirus infections have showed a steady increment in recent years, with a high clinical impact in both immunosuppressed and immunocompetent patients. In this context, the lack of a specific drug to treat these infections supports the search for new therapeutic alternatives.
View Article and Find Full Text PDFBiological therapies based on recombinant proteins such as antibodies or cytokines are continuously improving the repertoire of treatments against cancer. However, safety and efficacy of this approach is often limited by inappropriate biodistribution and pharmacokinetics of the proteins when they are administered systemically. Local administration of gene therapy vectors encoding these proteins would be a feasible alternative if they could mediate long-term and controlled expression of the transgene after a single intratumoral administration.
View Article and Find Full Text PDFBackground & Aims: Liver regeneration after partial hepatectomy (PH) increases the protein folding burden at the endoplasmic reticulum of remnant hepatocytes, resulting in induction of the unfolded protein response. We investigated the role of the core unfolded protein response transcription factor X-box binding protein 1 (XBP1) in liver regeneration using genome-wide chromatin immunoprecipitation analysis.
Methods: We performed studies with C57Bl6-J (control) and interleukin 6-knockout mice.
Background: The limited efficacy of current treatments against pancreatic cancer has prompted the search of new alternatives such as virotherapy. Activation of the immune response against cancer cells is emerging as one of the main mechanisms of action of oncolytic viruses (OV). Direct oncolysis releases tumor antigens, and viral replication within the tumor microenvironment is a potent danger signal.
View Article and Find Full Text PDFAcute intermittent porphyria (AIP) is a hepatic metabolic disease that results from haplo-insufficient activity of porphobilinogen deaminase (PBGD). The dominant clinical feature is acute intermittent attacks when hepatic heme synthesis is activated by endocrine or exogenous factors. Gene therapy vectors over-expressing PBGD protein in the liver offers potential as a cure for AIP.
View Article and Find Full Text PDFUnlabelled: Regulatory T cells (Treg) play a critical role in the modulation of immune responses to viral antigens in chronic viral hepatitis. Woodchucks (Marmota monax) infected with the woodchuck hepatitis virus (WHV) represent the best animal model for chronic hepatitis B virus (HBV) infection. Examination of intrahepatic and peripheral Treg in uninfected and WHV chronically infected woodchucks showed a significant increase of intrahepatic Treg numbers in chronically infected animals, whereas no differences were found in peripheral blood.
View Article and Find Full Text PDFBackground And Aims: New options are needed for the management and prevention of colorectal cancer liver metastases. Interleukin 12 (IL-12) is an immunostimulatory cytokine with proven antitumour effect in animal models. Despite evidence indicating its biological effect in humans, neither the recombinant protein nor gene therapy vectors expressing IL-12 have shown a relevant benefit in patients with cancer.
View Article and Find Full Text PDFBackground: Bioluminescent imaging (BLI) is based on the detection of light emitted by living cells expressing a luciferase gene. Stable transfection of luciferase in cancer cells and their inoculation into permissive animals allows the noninvasive monitorization of tumor progression inside internal organs. We have applied this technology for the development of a murine model of colorectal cancer involving the liver, with the aim of improving the pre-clinical evaluation of new anticancer therapies.
View Article and Find Full Text PDF