Publications by authors named "Manuela Gebhardt"

The baculovirus Cydia pomonella granulovirus (CpGV) is widely applied as a biocontrol agent of codling moth. After field resistance of codling moth populations had been observed against the commercially used Mexican (M) isolate of CpGV, infection experiments of larvae of the resistant codling moth strain CpRR1 showed that several other naturally occurring CpGV isolates (I12, S, E2, and I07) from different geographic origins are still infectious to resistant CpRR1. Whole-genome sequencing and phylogenetic analyses of these geographic CpGV variants revealed that their genomes share only a single common difference from that of CpGV-M, which is a mutation coding for a repeat of 24 nucleotides within the gene pe38; this mutation results in an additional repeat of eight amino acids that appears to be inserted to PE38 of CpGV-M only.

View Article and Find Full Text PDF

To understand the impact of ionizing irradiation from diagnostics and radiotherapy on cells, we examined K(+) channel activity before and immediately after exposing cells to X-rays. Already, low dose in the cGy range caused in adenocarcinoma A549 cells within minutes a hyperpolarization following activation of the human intermediate-conductance Ca(2+)-activated K(+) channel (hIK). The response was specific for cells, which functionally expressed hIK channels and in which hIK activity was low before irradiation.

View Article and Find Full Text PDF

Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called "snorkeling" of a cationic amino acid, which is conserved in the outer TMD of small viral K(+) channels. Experimentally, snorkeling activity is not mandatory for Kcv(PBCV-1) because K29 can be replaced by most of the natural amino acids without any corruption of function.

View Article and Find Full Text PDF

Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K(+) channels. To determine if these viral K(+) channels are the product of molecular piracy from their hosts, we compared the sequences of the K(+) channel pore modules from seven phycodnaviruses to the K(+) channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced.

View Article and Find Full Text PDF

The small viral channel Kcv is a Kir-like K(+) channel of only 94 amino acids. With this simple structure, the tetramer of Kcv represents the pore module of all complex K(+) channels. To examine the structural contribution of the transmembrane domains (TMDs) to channel function, we performed Ala scanning mutagenesis of the two domains and tested the functionality of the mutants in a yeast complementation assay.

View Article and Find Full Text PDF

The viral potassium channel Kcv comprises only 94 amino acids, which represent the pore module of more complex K(+) channels. As for Kir-type channels, Kcv also has a short N-terminal helix exposed to the cytoplasm, upstream of the first transmembrane domain. Here we show that this helix is relevant for Kcv function.

View Article and Find Full Text PDF

A computational model for the open state of the short viral Kcv potassium channel was created and tested based on homology modeling and extensive molecular-dynamics simulation in a membrane environment. Particular attention was paid to the structure of the highly flexible N-terminal region and to the protonation state of membrane-exposed lysine residues. Data from various experimental sources, NMR spectroscopy, and electrophysiology, as well as results from three-dimensional reference interaction site model integral equation theory were taken into account to select the most reasonable model among possible variants.

View Article and Find Full Text PDF