Flaviviruses are major human disease-causing pathogens, including dengue virus (DENV), Zika virus, yellow fever virus and others. DENV infects hundreds of millions of people per year around the world, causing a tremendous social and economic burden. DENV capsid (C) protein plays an essential role during genome encapsidation and viral particle formation.
View Article and Find Full Text PDFIt has become increasingly evident that unveiling the mechanisms of virus entry, assembly, and virion release is fundamental for identifying means for preventing viral spread and controlling viral disease. Due to virus mobility and structural and/or functional heterogeneity among viral particles, high spatiotemporal resolution single-virus/single-particle techniques are required to capture the behavior of viral particles inside infected cells.In this chapter, we present fluorescence imaging analysis methods for studying the mobility of fluorescently labeled dengue virus (DENV) proteins in live infected cells.
View Article and Find Full Text PDFDengue is the single most important human viral infection transmitted by insects. The function of the viral proteins andtheir interactions with the host cell is under exhaustive investigation with the aim of identifying antiviral strategies. Here,using recombinant full-length dengue virus genomes, carrying a fluorescent mCherry fused to capsid, we studied biophysicalproperties of the viral protein during one infectious cycle in living cells.
View Article and Find Full Text PDFThe localization of surfaces inhomogeneities is central to many areas of technology, chemistry and biology, ranging from surface defects in industry to the identification and screening of early bio-defects inside cells. The development of methods that enable direct, sensitive, and rapid detection of those inhomogeneities is both relevant and timely. To address this challenge, we developed a far-field nanoimaging method to detect the presence of surface's nanodefects that modify the signal emitted by gold nanoparticles (AuNPs) under laser irradiation.
View Article and Find Full Text PDFWe present a simple and fast methodology for measuring the two-photon (2P) action cross section of phototriggers. The method uses a standard 2P microscopy setup for both uncaging and detection and a set of lithographically made microcuvettes in order to reduce the total excitation volume and, thus, the photolysis time. The procedure does not need a standard and can be used for any caged compounds that present different emission properties before and after uncaging.
View Article and Find Full Text PDFMost accepted single particle tracking methods are able to obtain high-resolution trajectories for relatively short periods of time. In this work we apply a straightforward combination of single-particle tracking microscopy and metallic nanoparticles internalization on mouse chromaffin cells to unveil the intracellular trafficking mechanism of metallic-nanoparticle-loaded vesicles (MNP-V) complexes after clathrin dependent endocytosis. We found that directed transport is the major route of MNP-Vs intracellular trafficking after stimulation (92.
View Article and Find Full Text PDFMetallic nanoparticles (NPs) are able to modify the excitation and emission rates (plasmonic enhancement) of fluorescent molecules in their close proximity. In this work, we measured the emission spectra of 20 nm Gold Nanoparticles (AuNPs) fixed on a glass surface submerged in a solution of different fluorophores using a spectral camera and 2-photon excitation. While on the glass surface, we observed the presence in the emission at least 3 components: i) second harmonic signal (SHG), ii) a broad emission from AuNPS and iii) fluorescence arising from fluorophores nearby.
View Article and Find Full Text PDF