Publications by authors named "Manuela Derosas"

Generating new kidneys using tissue engineering technologies is an innovative strategy for overcoming the shortage of donor organs for transplantation. Here we report how to efficiently engineer the kidney vasculature of decellularized rat kidney scaffolds by using human induced pluripotent stem cell (hiPSCs)-derived endothelial cells (hiPSC-ECs). In vitro, hiPSC-ECs responded to flow stress by acquiring an alignment orientation, and attached to and proliferated on the acellular kidney sections, maintaining their phenotype.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is one of the most relevant health issues, leading to millions of deaths. The magnitude of the phenomenon remarks the urgent need for innovative and effective therapeutic approaches. Cell-based therapy with renal progenitor cells (RPCs) has been proposed as a possible strategy.

View Article and Find Full Text PDF

Doxorubicin (DOX) is an anticancer drug with cardiotoxic side effects mostly caused by iron homeostasis dysregulation. Mitochondria are involved in iron trafficking and mitochondrial ferritin (FtMt) was shown to provide protection against cellular iron imbalance. Therefore, we hypothesized that FtMt overexpression could limit DOX effects on iron homeostasis.

View Article and Find Full Text PDF

Pantothenate kinase 2 (Pank2) is a mitochondrial enzyme that catalyses the first regulatory step of Coenzyme A synthesis and that is responsible for a genetic movement disorder named Pank-associated neurodegeneration (PKAN). This is characterized by abnormal iron accumulation in the brain, particularly in the globus pallidus. We downregulated Pank2 in some cell lines by using specific siRNAs to study its effect on iron homeostasis.

View Article and Find Full Text PDF

Frataxin is a ubiquitous mitochondrial iron-binding protein involved in the biosynthesis of Fe/S clusters and heme. Its deficiency causes Friedreich's ataxia, a severe neurodegenerative disease. Mitochondrial ferritin is another major iron-binding protein, abundant in the testis and in sideroblasts from patients with sideroblastic anemia.

View Article and Find Full Text PDF

X-linked sideroblastic anemia with ataxia (XLSA/A) is caused by defects of the transporter ABCB7 and is characterized by mitochondrial iron deposition and excess of protoporphyrin in erythroid cells. We describe ABCB7 silencing in HeLa cells by performing sequential transfections with siRNAs. The phenotype of the ABCB7-deficient cells was characterized by a strong reduction in proliferation rate that was not rescued by iron supplementation, by evident signs of iron deficiency, and by a large approximately 6-fold increase of iron accumulation in the mitochondria that was poorly available to mitochondrial ferritin.

View Article and Find Full Text PDF

Hepcidin is a small peptide that acts as a regulator of systemic iron homeostasis. To study some of its functional properties, a synthetic cDNA for the minimal, 20-amino-acid, form of human hepcidin was cloned into different constructs for expression in Escherichia coli. The fusion ferritin-hepcidin produced molecules retaining most of ferritin structural and functional properties, including ferroxidase and iron incorporation activities.

View Article and Find Full Text PDF