Publications by authors named "Manuela Chaves"

Tree ring synthesis is a key process in wood production; however, little is known of the origin and fate of the carbon involved. We used natural 13C abundance to investigate the carbon-use process for the ring development in a temperate deciduous (Quercus petraea (Matt.) Liebl.

View Article and Find Full Text PDF

The impact of water deficit on berry quality has been extensively investigated during the last decades. Nonetheless, there is a scarcity of knowledge on the performance of varieties exposed to a combination of high temperatures/water stress during the growing season and under vineyard conditions. The objective of this research was to investigate the effects of two irrigation regimes, sustained deficit irrigation (SDI, 30% ET) and regulated deficit irrigation (RDI, 15% ET) and of two cluster positions within the canopy (east- and west-exposed sides) on berry ripening in red Aragonez (Tempranillo) grapevines.

View Article and Find Full Text PDF

Shrubs often form the understorey in Mediterranean oak woodlands. These shrubs are exposed to recurrent water deficits, but how they will respond to predicted future exacerbation of drought is not yet understood. The ecophysiology of the shrub Cistus salvifolius L.

View Article and Find Full Text PDF

Polyols are important metabolites that often function as carbon and energy sources and/or osmoprotective solutes in some plants. In grapevine, and in the grape berry in particular, the molecular aspects of polyol transport and metabolism and their physiological relevance are virtually unknown to date. Here, the biochemical function of a grapevine fruit mesocarp polyol transporter (VvPLT1) was characterized after its heterologous expression in yeast.

View Article and Find Full Text PDF

Stomatal regulation is a key determinant of plant photosynthesis and water relations, influencing plant survival, adaptation, and growth. Stomata sense the surrounding environment and respond rapidly to abiotic and biotic stresses. Stomatal conductance to water vapour (g s) and/or transpiration (E) are therefore valuable physiological parameters to be monitored in plant and agricultural sciences.

View Article and Find Full Text PDF

Plants are generally well adapted to a wide range of environmental conditions. Even though they have notably prospered in our planet, stressful conditions such as salinity, drought and cold or heat, which are increasingly being observed worldwide in the context of the ongoing climate changes, limit their growth and productivity. Behind the remarkable ability of plants to cope with these stresses and still thrive, sophisticated and efficient mechanisms to re-establish and maintain ion and cellular homeostasis are involved.

View Article and Find Full Text PDF

The early (2-4 d) effects of slowly imposed soil water deficit on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance in different organs (leaf blade, stem stele, stem cortex, and root) were evaluated on 23-d-old plants (growth chamber assay). Our work shows that several metabolic adjustments occurred prior to alteration of the plant water status, implying that water deficit is perceived before the change in plant water status. The slow, progressive decline in soil water content started to be visible 3 d after withholding water (3 DAW).

View Article and Find Full Text PDF

Understanding the responses of cork oak (Quercus suber L.) to actual and predicted summer conditions is essential to determine the future sustainability of cork oak woodlands in Iberia. Thermal imaging may provide a rapid method for monitoring the extent of stress.

View Article and Find Full Text PDF

An integrated chemical and biological approach for the quality assessment of freshwater resources in a vineyard area of the 'Alentejo' region (South Portugal) is presented. This includes analysis to 11 pesticide compounds and whole toxicity testing on algae and crustaceans. Simazine, terbuthylazine, terbutryn, desethylatrazine and chlorpyrifos were the most frequently detected pesticides in water collected from wells and drainage channels.

View Article and Find Full Text PDF

The recent breakthrough discoveries of transport systems assigned with atypical functions provide evidence for complexity in membrane transport biochemistry. Some channels are far from being simple pores creating hydrophilic passages for solutes and can, unexpectedly, act as enzymes, or mediate high-affinity uptake, and some transporters are surprisingly able to function as sensors, channels or even enzymes. Furthermore, numerous transport studies have demonstrated complex multiphasic uptake kinetics for organic and mineral nutrients.

View Article and Find Full Text PDF

Effects of irrigation strategies on stomata and plant water use were studied in field-grown grapevines (Vitis vinifera L.). We assessed the importance of root-derived chemical signals vs.

View Article and Find Full Text PDF

Dehydrins (DHNs) are proteins that accumulate abundantly in various plant tissues in response to environmental stresses and during seed maturation, possibly assisting cells in tolerating dehydration. White lupins (Lupinus albus L.) are able to withstand periods of severe water deficit (WD) and previous work suggested that the stem plays a central role as a survival structure.

View Article and Find Full Text PDF

The effect of chilling on growth and plant hydraulic properties in a drought-resistant clone (CN5) and a drought-sensitive clone (ST51) of Eucalyptus globulus Labill. was evaluated. Chilling (10/5°C, day/night) led to a general decrease in growth of both clones and significant reductions in root hydraulic conductivity, rate of photosynthesis and stomatal conductance in comparison to plants grown at control temperature (24/16°C).

View Article and Find Full Text PDF

Temperatures of leaves or canopies can be used as indicators of stomatal closure in response to soil water deficit. In 2 years of field experiments with grapevines (Vitis vinifera L., cvs Castelão and Aragonês), it was found that thermal imaging can distinguish between irrigated and non-irrigated canopies, and even between deficit irrigation treatments.

View Article and Find Full Text PDF

The objective of this study was to evaluate the effect of deficit irrigation on intrinsic water use efficiency (A/g(s)) and carbon isotope composition (delta13C) of two grapevine cultivars (Moscatel and Castelão), growing in a commercial vineyard in SW Portugal. The study was done in two consecutive years (2001 and 2002). The treatments were full irrigation (FI), corresponding to 100% of crop evapotranspiration (ETc), rain-fed (no irrigation, NI), and two types of deficit irrigation (50% ETc): (i) by supplying the water either to one side of the root system or to the other, which is partial rootzone drying (PRD), or (ii) dividing the same amount of water by the two sides of the root system, the normal deficit irrigation (DI).

View Article and Find Full Text PDF

A study to assess the effects of the Partial Rootzone Drying (PRD) irrigation strategy in comparison to other irrigation systems was carried out in southern Portugal in two field-grown grapevines varieties, Moscatel and Castelão. We addressed the question of whether by regulating growth and plant water use, the PRD system would enable an equilibrated vegetative development, leading to a favourable capture of solar radiation for photoassimilate production and, at the same time to provide an optimum environment for fruit maturation. Three irrigation schemes were applied in addition to the non-irrigated (NI) vines: partial root drying (PRD), 50% of crop evapotranspiration (ETc), supplied to only one side of the root system while the other one was allowed to dry, alternating sides every 15 days; deficit irrigated (DI), 50% ETc supplied, half to each side of the root system and full irrigated (FI, 100% ETc).

View Article and Find Full Text PDF

The effects of 'partial rootzone drying' (PRD) irrigation compared with other irrigation systems, namely non-irrigated (NI), full irrigation (FI) and deficit irrigation (DI), on stomatal conductance and carbon assimilation were evaluated in field-grown grapevines (Vitis vinifera L. cv. Moscatel).

View Article and Find Full Text PDF

In the last decade, our understanding of the processes underlying plant response to drought, at the molecular and whole-plant levels, has rapidly progressed. Here, we review that progress. We draw attention to the perception and signalling processes (chemical and hydraulic) of water deficits.

View Article and Find Full Text PDF

This paper reviews and discusses strategies for the use of thermal imaging for studies of stomatal conductance in the field and compares techniques for image collection and analysis. Measurements were taken under a range of environmental conditions and on sunlit and shaded canopies to illustrate the variability of temperatures and derived stress indices. A simple procedure is presented for correcting for calibration drift within the images from the low-cost thermal imager used (SnapShot 225, Infrared Solutions, Inc.

View Article and Find Full Text PDF

The effects of a slowly-imposed drought stress on gas-exchange, chlorophyll a fluorescence, biochemical and physiological parameters of Vitis vinifera L. leaves (cv. Aragonez, syn.

View Article and Find Full Text PDF