Publications by authors named "Manuela Campiglio"

We previously identified an extracellular matrix (ECM) gene expression pattern in breast cancer (BC), called ECM3, characterized by a high expression of genes encoding structural ECM proteins. Since ECM is reportedly implicated in response to therapy of BCs, the aim of this work is to investigate the prognostic and predictive value of ECM3 molecular classification in HER2-positive BCs. ECM3 resulted in a robust cluster that identified a subset of 25-37% of HER2-positive tumors with molecular aggressive features.

View Article and Find Full Text PDF

Wound healing fluid that originates from breast surgery increases the aggressiveness of cancer cells that remain after the surgery. We determined the effects of the extent of surgery and tumor-driven remodeling of the surrounding microenvironment on the ability of wound-healing to promote breast cancer progression. In our analysis of a panel of 34 cytokines, chemokines, and growth factors in wound healing fluid, obtained from 27 breast carcinoma patients after surgery, the levels of several small molecules were associated with the extent of cellular damage that was induced by surgery.

View Article and Find Full Text PDF

Background: CDCP1, a transmembrane protein with tumor pro-metastatic activity, was recently identified as a prognostic marker in TNBC, the most aggressive breast cancer subtype still lacking an effective molecular targeted therapy. The mechanisms driving CDCP1 over-expression are not fully understood, although several stimuli derived from tumor microenvironment, such as factors present in Wound Healing Fluids (WHFs), reportedly increase CDCP1 levels.

Methods: The expression of CDCP1, PDGFRβ and ERK1/2cell was tested by Western blot after stimulation of MDA-MB-231 cells with PDGF-BB and, similarly, in presence or not of ERK1/2 inhibitor in a panel of TNBC cell lines.

View Article and Find Full Text PDF

Due to their constant exposure to inhaled antigens, lungs represent a particularly immunosuppressive environment that limits excessive immune responses; however, cancer cells can exploit this unique environment for their growth. We previously described the ability of aerosolized CpG-ODN combined with Poly(I:C) (TLR9 and TLR3 agonists, respectively) to promote antitumor immunity in a B16 melanoma lung metastasis model. Here, we explored the possibility of improving the therapeutic efficacy of TLR9/TLR3 agonist combinations by including in the inhalant either an antibody directed to both Ly6G and Ly6C markers to locally deplete myeloid-derived suppressive cells (MDSCs) or IFNα to directly activate the natural killer (NK) and macrophage innate immune cells in the lung.

View Article and Find Full Text PDF

CDCP1, a transmembrane noncatalytic receptor, the expression of which has been associated with a poor prognosis in certain epithelial cancers, was found to be expressed in highly aggressive triple-negative breast cancer (TNBC) cell models, in which it promoted aggressive activities-ie, migration, invasion, anchorage-independent tumor growth, and the formation of vascular-like structures in vitro. By immunohistochemical (IHC) analysis of 100 human TNBC specimens, CDCP1 was overexpressed in 57% of samples, 38% of which exhibited a gain in CDCP1 copy number by fluorescence in situ hybridization (FISH). CDCP1 positivity was significantly associated between FISH and IHC.

View Article and Find Full Text PDF

While results thus far demonstrate the clinical benefit of trastuzumab, some patients do not respond to this therapy. To identify a molecular predictor of trastuzumab benefit, we conducted whole-transcriptome analysis of primary HER2+ breast carcinomas obtained from patients treated with trastuzumab-containing therapies and correlated the molecular portrait with treatment benefit. The estimated association between gene expression and relapse-free survival allowed development of a trastuzumab risk model (TRAR), with ERBB2 and ESR1 expression as core elements, able to identify patients with high and low risk of relapse.

View Article and Find Full Text PDF

The tumor-suppressor protein fragile histidine triad (Fhit) exerts its functions in the cytoplasm, although some reports suggest that it may also act in the nucleus. We previously showed that cytosolic Fhit protein levels in cancer cell lines stimulated to proliferate were reduced by proteasomal degradation. Here, we demonstrate that Fhit is physiologically present in the nucleus of breast cancer cell lines and tissues at a low level and that proliferative stimulation increases nuclear levels.

View Article and Find Full Text PDF

The need to identify biomarkers for bevacizumab-based treatment in advanced colorectal cancer is imperative. The aim of this study was to investigate the prognostic role of circulating VEGF, PDGF, SDF-1, osteopontin and CEA in patients randomly assigned to three bevacizumab-based regimens. Plasma samples from 50 patients treated at a single Institution were analysed using the multiplex assay BioPlex™ 2200 (Bio-Rad Laboratories, Inc, Berkeley, CA, USA) at baseline, before first three cycles and subsequently every three cycles until disease progression.

View Article and Find Full Text PDF

A splice isoform of the HER2 receptor that lacks exon 16 (d16HER2) is expressed in many HER2-positive breast tumors, where it has been linked with resistance to the HER2-targeting antibody trastuzumab, but the impact of d16HER2 on tumor pathobiology and therapeutic response remains uncertain. Here, we provide genetic evidence in transgenic mice that expression of d16HER2 is sufficient to accelerate mammary tumorigenesis and improve the response to trastuzumab. A comparative analysis of effector signaling pathways activated by d16HER2 and wild-type HER2 revealed that d16HER2 was optimally functional through a link to SRC activation (pSRC).

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) is a very aggressive subgroup of breast carcinoma, still lacking specific markers for an effective targeted therapy and with a poorer prognosis compared to other breast cancer subtypes. In this study we investigated the possibility that TNBC cells contribute to the establishment of tumor vascular network by the process known as vasculogenic mimicry, through endothelial cell differentiation. Vascular-like functional properties of breast cancer cell lines were investigated in vitro by tube formation assay and in vivo by confocal microscopy, immunofluorescence or immunohistochemistry on frozen tumor sections.

View Article and Find Full Text PDF

Understanding the mechanisms of trastuzumab efficacy and resistance is a step toward optimizing treatment outcome in HER2-positive breast carcinoma patients. Preclinical studies have indicated different trastuzumab antitumor mechanisms, that is, cytostatic inhibition of tumor proliferation, antibody-dependent cell cytotoxicity, and inhibition of HER2-mediated DNA repair. Clinical studies point to the clinical setting dependence of these mechanisms, with antibody-dependent cell cytotoxicity predominating when trastuzumab is used as monotherapy in neoadjuvant and metastatic settings, whereas inhibition of DNA repair predominates in neoadjuvant and adjuvant settings involving concomitant trastuzumab and chemotherapy; in sequential protocols, the antibody appears to act primarily through cytostatic activity by inhibiting HER2-mediated cell proliferation.

View Article and Find Full Text PDF

Trastuzumab, a humanized monoclonal antibody directed against HER2, has shown efficacy in breast cancers; however many patients do not respond to this reagent. Here, we discuss the potential mechanisms of trastuzumab efficacy and resistance in different clinical settings as a step toward optimizing the appropriate application of this antibody. The three major antitumor mechanisms of trastuzumab, i.

View Article and Find Full Text PDF

Recent studies have reported the potential clinical utility for metastatic breast cancer (MBC) patients of continuing trastuzumab beyond progression. Based on those results, here the authors have examined the benefits of trastuzumab-continuation by specifically evaluating RECIST responses upon first line trastuzumab-treatment as a potential predictive marker for therapeutic effect of trastuzumab-continuation beyond metastatic disease progression. The authors carried out a retrospective analysis of 272 HER2 positive MBC patients under trastuzumab treatment at 22 different oncology Italian centers during the years of 2000 and 2001 who progressed under first line trastuzumab-treatment.

View Article and Find Full Text PDF

Exosomes are endosome-derived nanovesicles actively released into the extracellular environment and biological fluids, both under physiological and pathological conditions, by different cell types. We characterized exosomes constitutively secreted by HER2-overexpressing breast carcinoma cell lines and analyzed in vitro and in vivo their potential role in interfering with the therapeutic activity of the humanized antibody Trastuzumab and the dual tyrosine kinase inhibitor (TKI) Lapatinib anti-HER2 biodrugs. We show that exosomes released by the HER2-overexpressing tumor cell lines SKBR3 and BT474 express a full-length HER2 molecule that is also activated, although to a lesser extent than in the originating cells.

View Article and Find Full Text PDF

The question of the serum HER2 extracellular domain (HER2/ECD) measurement for prediction of response to the anti-HER2 antibody Trastuzumab is still an open and current matter of clinical debate. To elucidate the involvement of shed HER2/ECD in HER2-driven tumor progression and in guiding therapy of individual patients, we examined biological effects exerted by elevated HER2/ECD in cancer growth and in response to Trastuzumab. To this purpose SKOV3 tumor cells were stably transfected to release a recombinant HER2/ECD molecule (rECD).

View Article and Find Full Text PDF

Importance Of The Field: Differential levels of HER2 expression in normal versus HER2-overexpressing breast carcinomas, together with the demonstration of a key role for HER2 in tumor progression, make HER2 an ideal target for specific therapeutic approaches.

Areas Covered In This Review: This review considers the clinical value of trastuzumab and lapatinib, the two HER2-targeted therapies approved for clinical practice. References were chosen by searching the PubMed and MEDLINE datasets using as search term: 'HER2', in association with 'prognosis', 'response', 'trastuzumab', 'lapatinib' and 'resistance'.

View Article and Find Full Text PDF

Tumor cell growth, even in advanced stages of ovarian cancer, is nearly always restricted to the peritoneal cavity; therefore, repeated intraperitoneal injections of oligodeoxynucleotides containing dinucleotides with unmethylated CpG motifs (CpG-ODN) recruiting and activating innate effector cells throughout the abdominal cavity to the tumor site might control tumor cell growth and ascites formation. After a single CpG-ODN treatment, in IGROV-1 ovarian tumor ascites-bearing athymic mice, the number of tumor cells declined rapidly and markedly, and ascites volumes declined shortly after treatment (5 h), increasing thereafter at a slower rate than in controls. When administered every 7 days for 4 weeks, CpG-ODN had only a marginal effect on survival time, whereas administration 5 days/wk for 3 or 4 weeks led to a significantly increased survival time as compared with controls (P<0.

View Article and Find Full Text PDF

Characterizing mechanisms regulating mammary cell growth and differentiation is vital, as they may contribute to breast carcinogenesis. Here, we examine a cross talk mechanism(s) downstream of prolactin (PRL), a primary differentiation hormone, and epidermal growth factor (EGF), an important proliferative factor, in mammary epithelial cell growth and differentiation. Our data indicate that EGF exerts inhibitory effects on PRL-induced cellular differentiation by interfering with Stat5a-mediated gene expression independent of the PRL-proximal signaling cascade.

View Article and Find Full Text PDF

Although the epidermal growth factor receptor (EGFR) is frequently expressed in human primary breast carcinoma, the majority of breast cancer patients do not respond to treatment with EGFR tyrosine-kinase inhibitors such as gefitinib. We isolated through a stepwise dose escalation of the drug two gefitinib-resistant SK-Br-3 clones, ZD6 and ZD10 (ZD) cells, which showed, respectively, a three- to five-fold increase in the IC50 for gefitinib as compared with parental cells. The levels of expression of EGFR were increased in ZD cells as compared with wild-type SK-Br-3 cells.

View Article and Find Full Text PDF

In some HER2-positive breast tumors, cell surface overexpression of HER2 is not associated with gene amplification but may instead rest in altered gene transcription, half-life, or recycling of the oncoprotein. Here, we show that HER2 overexpression in HER2 2+ carcinomas is associated with neither an increase in gene transcription nor a deregulation in the ubiquitin-dependent pathways, but instead seems to be regulated by protein kinase Calpha (PKCalpha) activity. The stimulation of PKCalpha up-regulated HER2 expression, whereas PKCalpha inhibition by pharmacologic treatments and PKCalpha-specific small interfering RNA led to a dramatic down-regulation of HER2 levels only in breast cancer cells HER2 2+.

View Article and Find Full Text PDF

The tumor suppressor gene FHIT is inactivated by genetic and epigenetic changes, i.e., loss of heterozygosity or promoter hypermethylation, in common human cancers.

View Article and Find Full Text PDF

The tumor suppressor gene FHIT is inactivated by genetic and epigenetic changes in the majority of common human cancers. The human Fhit protein undergoes phosphorylation on tyrosine residue 114 by Src and related kinases both in vitro and in vivo. Src is a key cytoplasmic tyrosine kinase downstream to several growth factor receptors, including those of the EGF receptor family, which are overexpressed and activated in about one-third of human breast and ovarian carcinomas.

View Article and Find Full Text PDF