Publications by authors named "Manuela Buonanno"

Scientific bodies overseeing UV radiation protection recommend safety limits for exposure to ultraviolet radiation in the workplace based on published peer-reviewed data. To support this goal, a 3D model of the human cornea was used to assess the wavelength dependence of corneal damage induced by UV-C radiation. In the first set of experiments the models were exposed with or without simulated tears; at each wavelength (215-255 nm) cells with DNA dimers and their distribution within the epithelium were measured.

View Article and Find Full Text PDF

Scientific bodies overseeing UV radiation protection recommend safety limits for exposure to ultraviolet light in the workplace based on published peer-reviewed data. To support this goal, a 3D model of the human cornea was used to assess the wavelength dependence of corneal damage induced by UVC light. In the first set of experiments the models were exposed with or without simulated tears; at each wavelength (215-255 nm) cells with DNA dimers and their distribution within the epithelium were measured.

View Article and Find Full Text PDF

Guidance on maximal limits for ultraviolet (UV) exposure has been developed by national and international organizations to protect against adverse effects on human skin and eyes. These guidelines consider the risk of both acute effects (i.e.

View Article and Find Full Text PDF

The prevention and reduction of microbial species entering and leaving Earth's biosphere is a critical aspect of planetary protection research. While various decontamination methods exist and are currently utilized for planetary protection purposes, the use of far-UVC light (200-230 nm) as a means for microbial reduction remains underexplored. Unlike conventional germicidal ultraviolet at 254 nm, which can pose a health risk to humans even with small exposure doses, far-UVC light poses minimal health hazard making it a suitable candidate for implementation in occupied areas of spacecraft assembly facilities.

View Article and Find Full Text PDF

An emerging intervention for control of airborne-mediated pandemics and epidemics is whole-room far-UVC (200-235 nm). Laboratory studies have shown that 222-nm light inactivates airborne pathogens, potentially without harm to exposed occupants. While encouraging results have been reported in benchtop studies and in room-sized bioaerosol chambers, there is a need for quantitative studies of airborne pathogen reduction in occupied rooms.

View Article and Find Full Text PDF
Article Synopsis
  • * Far-UVC operates at safer wavelengths (200-235 nm) than traditional germicidal UV, enabling it to effectively disinfect occupied spaces without harming people.
  • * Ongoing research is essential to establish safe exposure limits for far-UVC, with a focus on understanding its effects on skin and eyes, to enhance its use in future pandemic responses.
View Article and Find Full Text PDF

Ionizing radiation is known to be DNA damaging and mutagenic, however less is known about which mutational footprints result from exposures of human cells to different types of radiation. We were interested in the mutagenic effects of particle radiation exposures on genomes of various human cell types, in order to gauge the genotoxic risks of galactic cosmic radiation, and of certain types of tumor radiotherapy. To this end, we exposed cultured cell lines from the human blood, breast and lung to fractionated proton and alpha particle (helium nuclei) beams at doses sufficient to considerably affect cell viability.

View Article and Find Full Text PDF

Far-UVC radiation, typically defined as 200-235 nm, has similar or greater anti-microbial efficacy compared with conventional 254-nm germicidal radiation. In addition, biophysical considerations of the interaction of far-UVC with tissue, as well as multiple short-term safety studies in animal models and humans, suggest that far-UVC exposure may be safe for skin and eye tissue. Nevertheless, the potential for skin cancer after chronic long-term exposure to far-UVC has not been studied.

View Article and Find Full Text PDF

Purpose: The assumption that traversal of the cell nucleus by ionizing radiation is a prerequisite to induce genetic damage, or other important biological responses, has been challenged by studies showing that oxidative alterations extend beyond the irradiated cells and occur also in neighboring bystander cells. Cells and tissues outside the radiation field experience significant biochemical and phenotypic changes that are often similar to those observed in the irradiated cells and tissues. With relevance to the assessment of long-term health risks of occupational, environmental and clinical exposures, measurable genetic, epigenetic, and metabolic changes have been also detected in the progeny of bystander cells.

View Article and Find Full Text PDF

Recent research using UV radiation with wavelengths in the 200-235 nm range, often referred to as far-UVC, suggests that the minimal health hazard associated with these wavelengths will allow direct use of far-UVC radiation within occupied indoor spaces to provide continuous disinfection. Earlier experimental studies estimated the susceptibility of airborne human coronavirus OC43 exposed to 222-nm radiation based on fitting an exponential dose-response curve to the data. The current study extends the results to a wider range of doses of 222 nm far-UVC radiation and uses a computational model coupling radiation transport and computational fluid dynamics to improve dosimetry estimates.

View Article and Find Full Text PDF

Many infectious diseases, including COVID-19, are transmitted by airborne pathogens. There is a need for effective environmental control measures which, ideally, are not reliant on human behaviour. One potential solution is Krypton Chloride (KrCl) excimer lamps (often referred to as Far-UVC), which can efficiently inactivate pathogens, such as coronaviruses and influenza, in air.

View Article and Find Full Text PDF

Radiation therapy (RT) plays an important role in cancer treatment. The clinical efficacy of radiation therapy is, however, limited by normal tissue toxicity in areas surrounding the irradiated tumor. Compared to conventional radiation therapy (CONV-RT) in which doses are typically delivered at dose rates between 0.

View Article and Find Full Text PDF

The effectiveness of UVC to reduce airborne-mediated disease transmission is well established. However, conventional germicidal UVC (~254 nm) cannot be used directly in occupied spaces because of the potential for damage to the skin and eye. A recently studied alternative with the potential to be used directly in occupied spaces is far UVC (200-235 nm, typically 222 nm), as it cannot penetrate to the key living cells in the epidermis.

View Article and Find Full Text PDF

Far-UVC radiation is a promising technology that is potentially both effective at killing airborne microbes such as coronaviruses and influenza, and being minimally hazardous to the skin and eyes. Our previous studies on health risks from far-UVC have employed a krypton-chloride (KrCl) excimer lamp, emitting principally at 222 nm, supplemented with an optical filter to remove longer wavelength emissions inherent to these lamps. This study explores KrCl lamp health hazards by comparing filtered and unfiltered KrCl lamps using effective spectral irradiance calculations and experimental skin exposures.

View Article and Find Full Text PDF

A direct approach to limit airborne viral transmissions is to inactivate them within a short time of their production. Germicidal ultraviolet light, typically at 254 nm, is effective in this context but, used directly, can be a health hazard to skin and eyes. By contrast, far-UVC light (207-222 nm) efficiently kills pathogens potentially without harm to exposed human tissues.

View Article and Find Full Text PDF

Genetics and immunologic dynamics pushing the evolution of colorectal cancer (CRC) from the primary tumor to the metastases are largely unknown; cancer heterogeneity makes challenging both therapy and mechanistic studies. We selected patients developing CRC with lung-limited metastatic disease as only illness during their life in order to find any relevant genotype-phenotype relationship. Analysis of 523 cancer-relevant genes and of immune cells infiltration in primary and metastatic tissues revealed atypical genomic trajectories (TMB decrease, KRAS and SMAD4 regressive mutations), specific genetic events (ERBB2 point mutations) and scarce T-cell infiltration.

View Article and Find Full Text PDF

Although radiation is widely used to treat cancers, resistance mechanisms often develop and involve activation of DNA repair and inhibition of apoptosis. Therefore, compounds that sensitize cancer cells to radiation via alternative cell death pathways are valuable. We report here that ferroptosis, a form of nonapoptotic cell death driven by lipid peroxidation, is partly responsible for radiation-induced cancer cell death.

View Article and Find Full Text PDF

Exploring the variability in gene expressions of rare cells at the single-cell level is critical for understanding mechanisms of differentiation in tissue function and development as well as for disease diagnostics and cancer treatment. Such studies, however, have been hindered by major difficulties in tracking the identity of individual cells. We present an approach that combines single-cell picking, lysing, reverse transcription and digital polymerase chain reaction to enable the isolation, tracking and gene expression analysis of rare cells.

View Article and Find Full Text PDF

The consideration of how a given technique affects results of experimental measurements is a must to achieve correct data interpretation. This might be challenging when it comes to measurements on biological systems, where it is unrealistic to have full control (e.g.

View Article and Find Full Text PDF

Background: Radiotherapy outcomes are limited by toxicity in the healthy tissues surrounding the irradiated tumor. Recent pre-clinical studies have shown that irradiations with electrons or photons delivered at so called FLASH dose rates (i.e.

View Article and Find Full Text PDF

An approach based on track-structure calculations has been developed to take account of artefacts occurring during γ-H2AX foci detection in 2D images of samples analyzed through immunocytochemistry. The need of this works stems from the observed saturation in foci yields measured after X-ray doses higher than few grays, hindering an unambiguous quantification of DNA damage and of radiation effectiveness. The proposed modelling approach allows to simulate the observer's point of view for foci scoring, mimicking the selection of a slice Δz of the cell nucleus due to the microscope depth of field, and applying a clustering algorithm to group together damages within a resolution parameter r.

View Article and Find Full Text PDF

Drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) are a target for new antimicrobial technologies. Far-UVC technology is an emerging disinfection method that directly kills microorganisms using light. In contrast with conventional UV sterilization, far-UVC light has antimicrobial capabilities without apparent harm to mammalian cells.

View Article and Find Full Text PDF