Publications by authors named "Manuel Wieser"

Background: SARS-CoV-2 infection activates interferon-controlled signaling pathways and elicits a wide spectrum of immune responses and clinical manifestations in human patients.

Methods: Here, we investigate the impact of prior vaccination on the innate immune response of hospitalized COVID-19 patients infected with the SARS-CoV-2 Beta variant through RNA sequencing of peripheral blood immune cells. Four patients had received the first dose of BNT162b2 about 11 days prior to the onset of COVID-19 symptoms and five patients were unvaccinated.

View Article and Find Full Text PDF

Fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) energize the COVID-19 pandemic. While viral infections elicit a conserved immune response, it is not known whether SARS-CoV-2 variants, which display enhanced binding to the ACE2 receptor and reduced neutralizing activity by vaccine-elicited antibodies, prompt specific genomic immune responses. To test this, we generated and investigated the transcriptomes in BCs from hospitalized patients infected with either the Alpha variant (n = 36) or with the Alpha variant that had acquired the E484K escape mutation (Alpha+E484K) (n = 13).

View Article and Find Full Text PDF

Since tissue material is often lacking in metastatic prostate cancer (mPCa), there is increasing interest in using liquid biopsies for treatment decision and monitoring therapy responses. The purpose of this study was to validate the usefulness of circulating tumor cells (CTCs) and plasma-derived cell-free (cf) RNA as starting material for gene expression analysis through qPCR. CTCs were identified upon prostate-specific membrane antigen and/or cytokeratin positivity after enrichment with ScreenCell (Westford, Massachusetts, USA) filters or the microfluidic Parsortix (Guildford, Surrey, United Kingdom) system.

View Article and Find Full Text PDF

The eukaryotic translation initiation factor eIF3a is one of the core subunits of the translation initiation complex eIF3, responsible for ribosomal subunit joining and mRNA recruitment to the ribosome. It is known to play an important role in general translation initiation as well as in the specific translational regulation of various gene products, among which many influence tumour development, progression, and the therapeutically important pathways of DNA damage repair. Therefore, beyond its role in protein synthesis, eIF3a is emerging as regulator in tumour pathogenesis and therapy response and, therefore, a potential tumor marker.

View Article and Find Full Text PDF