The synthesis and structures of nitrile complexes of V(N[Bu]Ar), (Ar = 3,5-MeCH), are described. Thermochemical and kinetic data for their formation were determined by variable temperature Fourier transform infrared (FTIR), calorimetry, and stopped-flow techniques. The extent of back-bonding from metal to coordinated nitrile indicates that electron donation from the metal to the nitrile plays a less prominent role for than for the related complex Mo(N[Bu]Ar), .
View Article and Find Full Text PDFThe rate and mechanism of the elimination of NO from -RSn-O-N═N-O-SnR (R = Ph () and R = Cy ()) to form RSn-O-SnR (R = Ph () and R = Cy ()) have been studied using both NMR and IR techniques to monitor the reactions in the temperature range of 39-79 °C in CD. Activation parameters for this reaction are Δ = 15.8 ± 2.
View Article and Find Full Text PDFReaction of [Pd(IPr)] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) and O leads to the surprising discovery that at low temperature the initial reaction product is a highly labile peroxide complex cis-[Pd(IPr)(η-O)]. At temperatures ≳ -40 °C, cis-[Pd(IPr)(η-O)] adds a second O to form trans-[Pd(IPr)(η-O)]. Squid magnetometry and EPR studies yield data that are consistent with a singlet diradical ground state with a thermally accessible triplet state for this unique bis-superoxide complex.
View Article and Find Full Text PDFDibenzo-7-phosphanorbornadiene compounds, RPA (A = CH or anthracene), are investigated as phosphinidene sources upon thermally induced (70-90 °C) anthracene elimination. Analysis of substituent effects reveals that π-donating dialkylamide groups are paramount to successful phosphinidene transfer; poorer π-donors give reduced or no transfer. Substituent steric bulk is also implicated in successful transfer.
View Article and Find Full Text PDFThe kinetics of the reaction of PhSnH with excess •Cr(CO)CMe = •Cr, producing HCr and PhSn-Cr, was studied in toluene solution under 2-3 atm CO pressure in the temperature range of 17-43.5 °C. It was found to obey the rate equation d[PhSn-Cr]/dt = k[PhSnH][•Cr] and exhibit a normal kinetic isotope effect (k/k = 1.
View Article and Find Full Text PDFAl-K heterometallic terpene oximate derivatives with uncommon structural features are reported. These species react with an aryl ketone leading to heterometallic enolates via an unusual route. Isolation of a remarkable heterometallic Al-K enolate confirms the cooperative mechanism proposed by DFT calculations, where the oximate ligand has a prominent role.
View Article and Find Full Text PDFThe reaction of Pt(COD)2 with one equivalent of tri-tert-butylstannane, Bu(t)3SnH, at room temperature yields Pt(SnBu(t)3)(COD)(H)(3) in quantitative yield. In the presence of excess Bu(t)3SnH, the reaction goes further, yielding the dinuclear bridging stannylene complex [Pt(SnBu(t)3)(μ-SnBu(t)2)(H)2]2 (4). The dinuclear complex 4 reacts rapidly and reversibly with CO to furnish [Pt(SnBu(t)3)(μ-SnBu(t)2)(CO)(H)2]2 (5).
View Article and Find Full Text PDFThe enthalpy of oxygen atom transfer (OAT) to V[(Me3SiNCH2CH2)3N], 1, forming OV[(Me3SiNCH2CH2)3N], 1-O, and the enthalpies of sulfur atom transfer (SAT) to 1 and V(N[t-Bu]Ar)3, 2 (Ar = 3,5-C6H3Me2), forming the corresponding sulfides SV[(Me3SiNCH2CH2)3N], 1-S, and SV(N[t-Bu]Ar)3, 2-S, have been measured by solution calorimetry in toluene solution using dbabhNO (dbabhNO = 7-nitroso-2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene) and Ph3SbS as chalcogen atom transfer reagents.
View Article and Find Full Text PDFThe transannular diphosphorus bisanthracene adduct P2A2 (A = anthracene or C14H10) was synthesized from the 7-phosphadibenzonorbornadiene Me2NPA through a synthetic sequence involving chlorophosphine ClPA (28-35%) and the tetracyclic salt [P2A2Cl][AlCl4] (65%) as isolated intermediates. P2A2 was found to transfer P2 efficiently to 1,3-cyclohexadiene (CHD), 1,3-butadiene (BD), and (C2H4)Pt(PPh3)2 to form P2(CHD)2 (>90%), P2(BD)2 (69%), and (P2)[Pt(PPh3)2]2 (47%), respectively, and was characterized by X-ray diffraction as the complex [CpMo(CO)3(P2A2)][BF4]. Experimental and computational thermodynamic activation parameters for the thermolysis of P2A2 in a solution containing different amounts of CHD (0, 4.
View Article and Find Full Text PDFThe 3,4,8,9-tetramethyl-1,6-diphospha-bicyclo-[4.4.0]deca-3,8-diene (P2(C6H10)2) framework containing a P-P bond has allowed for an unprecedented selectivity toward functionalization of a single phosphorus lone pair with reference to acyclic diphosphane molecules.
View Article and Find Full Text PDFThermodynamic, kinetic, and computational studies are reported for oxygen atom transfer (OAT) to the complex V(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2, 1) from compounds containing N-O bonds with a range of BDEs spanning nearly 100 kcal mol(-1): PhNO (108) > SIPr/MesCNO (75) > PyO (63) > IPr/N2O (62) > MesCNO (53) > N2O (40) > dbabhNO (10) (Mes = mesityl; SIPr = 1,3-bis(diisopropyl)phenylimidazolin-2-ylidene; Py = pyridine; IPr = 1,3-bis(diisopropyl)phenylimidazol-2-ylidene; dbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene).
View Article and Find Full Text PDFTreatment of V(N[(t)Bu]Ar)(3) (1) (Ar = 3,5-Me(2)C(6)H(3)) with O(2) was shown by stopped-flow kinetic studies to result in the rapid formation of (η(1)-O(2))V(N[(t)Bu]Ar)(3) (2) (ΔH(‡) = 3.3 ± 0.2 kcal/mol and ΔS(‡) = -22 ± 1 cal mol(-1) K(-1)), which subsequently isomerizes to (η(2)-O(2))V(N[(t)Bu]Ar)(3) (3) (ΔH(‡) = 10.
View Article and Find Full Text PDFA methodology for the prediction of excitation energies for substituted chromophores on the basis of ground state structures has been developed. The formalism introduces the concept of "structural substituent excitation energy effect" for the rational prediction and quantification of the substituent effect in the excitation energy of a chromophore to an excited electronic state. This effect quantifies exclusively the excitation energy variation due to the structural changes of the chromophore induced by the substituent.
View Article and Find Full Text PDFThe photochemistry and photophysics of a series of S-nitrosothiols (RSNOs) have been studied computationally. The photocleavage mechanism of the model compound CH(3)SNO to release CH(3)S· and ·NO was studied at the CASPT2 level resulting in a barrierless process when irradiating in the visible region (S(1)), in the near UV region (S(2)) and for photosensitized (T(1)) reaction. The absorption energy required to initiate photocleavage was calculated at the CASPT2 and B3P86 levels showing the possibility of the modulation of NO release by RSNO photoactivation as a function of the substituent R.
View Article and Find Full Text PDFVery good linear correlations between experimental and calculated enthalpies of formation in the gas phase (G3(MP2)//B3LYP and G3) for 48 thiophene derivatives have been obtained. These correlations permit a correction of the calculated enthalpies of formation in order to estimate more reliable "experimental" values for the enthalpies of formation of substituted thiophenes, check the reliability of experimental measurements, and also predict the enthalpies of formation of new thiophenes that are not available in the literature. Moreover, the difference between the enthalpies of formation of isomeric thiophenes with the same substituent in positions 2 and 3 of the ring has been analyzed.
View Article and Find Full Text PDFHeterometallic aluminium-lithium species were prepared by the fragmentation reaction of the hexametallic cage compound [Li{2,6-(MeO)(2)C(6)H(3)O}](6) (1) with alkyl aluminium derivatives. Depending on the aluminium precursor, the species formed present different nuclearities in the solid state as shown by single crystal X-ray analysis. Spectroscopic and computational studies have been performed to study the nuclearity of the synthesized compounds in solution.
View Article and Find Full Text PDFThe enthalpies of oxygen atom transfer (OAT) from mesityl nitrile oxide (MesCNO) to Me(3)P, Cy(3)P, Ph(3)P, and the complex (Ar[(t)Bu]N)(3)MoP (Ar = 3,5-C(6)H(3)Me(2)) have been measured by solution calorimetry yielding the following P-O bond dissociation enthalpy estimates in toluene solution (±3 kcal mol(-1)): Me(3)PO [138.5], Cy(3)PO [137.6], Ph(3)PO [132.
View Article and Find Full Text PDFThis paper reports an experimental and computational thermochemical study on 1,3-dimethylbarbituric acid. The value of the standard (p° = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.
View Article and Find Full Text PDFThe reactivity of a number of two-coordinate [Pd(L)(L')] (L = N-heterocyclic carbene (NHC) and L' = NHC or PR(3)) complexes with O(2) has been examined. Stopped-flow kinetic studies show that O(2) binding to [Pd(IPr)(P(p-tolyl)(3))] to form cis-[Pd(IPr)(P(p-tolyl)(3))(η(2)-O(2))] occurs in a rapid, second-order process. The enthalpy of O(2) binding to the Pd(0) center has been determined by solution calorimetry to be -26.
View Article and Find Full Text PDFThis paper reports an experimental and theoretical study of the structures and standard (p(o) = 0.1 MPa) molar enthalpies of formation of 3H-1,3-benzoxazole-2-thione and 3H-1,3-benzothiazole-2-thione. The enthalpies of combustion and sublimation were measured by rotary bomb combustion calorimetry and the Knudsen effusion technique, and gas-phase enthalpies of formation values at T = 298.
View Article and Find Full Text PDFThis paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.
View Article and Find Full Text PDFVariable temperature equilibrium studies were used to derive thermodynamic data for formation of eta(1) nitrile complexes with Mo(N[(t)Bu]Ar)(3), 1. (1-AdamantylCN = AdCN: DeltaH(degrees) = -6 +/- 2 kcal mol(-1), DeltaS(degrees) = -20 +/- 7 cal mol(-1) K(-1). C(6)H(5)CN = PhCN: DeltaH(degrees) = -14.
View Article and Find Full Text PDFThe relative stabilities of 2,2'- and 3,3'-bithiophenes were evaluated by experimental thermochemistry and the results compared with data obtained from state of the art calculations, which were also extended to 2,3'-bithiophene. The standard (p degrees = 0.1 MPa) molar enthalpies of formation of crystalline 2,2'-bithiophene and 3,3'-bithiophene were calculated from the standard molar energies of combustion, in oxygen, to yield CO(2) (g) and H(2)SO(4) x 115 H(2)O, measured by rotating-bomb combustion calorimetry at T = 298.
View Article and Find Full Text PDF