Signaling pathways that originate at the plasma membrane, including regulated intramembrane proteolysis (RIP), enable extracellular cues to control transcription. We modified the yeast Gal4 transcription system to study the nuclear translocation of transcriptionally active complexes using the fluorescent protein citrine (Cit) as a reporter. This enabled highly sensitive quantitative analysis of transcription in situ at the single cell level.
View Article and Find Full Text PDFBackground: The amyloid precursor protein (APP) intracellular domain (AICD) is released from full-length APP upon sequential cleavage by either α- or β-secretase followed by γ-secretase. Together with the adaptor protein Fe65 and the histone acetyltransferase Tip60, AICD forms nuclear multiprotein complexes (AFT complexes) that function in transcriptional regulation.
Objective: To develop a medium-throughput machine-based assay for visualization and quantification of AFT complex formation in cultured cells.
The amyloid precursor protein (APP) as well as its homologues, APP-like protein 1 and 2 (APLP1 and APLP2), are cleaved by α-, β-, and γ-secretases, resulting in the release of their intracellular domains (ICDs). We have shown that the APP intracellular domain (AICD) is transported to the nucleus by Fe65 where they jointly bind the histone acetyltransferase Tip60 and localize to spherical nuclear complexes (AFT complexes), which are thought to be sites of transcription. We have now analyzed the subcellular localization and turnover of the APP family members.
View Article and Find Full Text PDFThe Alzheimer BACE1 enzyme cleaves numerous substrates, with largely unknown physiological consequences. We have previously identified the contribution of elevated BACE1 activity to voltage-gated sodium channel Na(v)1.1 density and neuronal function.
View Article and Find Full Text PDFBackground: The voltage-gated sodium channel β2 subunit (Navβ2) is a physiological substrate of BACE1 (β-site APP cleaving enzyme) and γ-secretase, two proteolytic enzymes central to Alzheimer's disease pathogenesis. Previously, we have found that the processing of Navβ2 by BACE1 and γ-secretase regulates sodium channel metabolism in neuronal cells. In the current study we identified the BACE1 cleavage sites in human Navβ2.
View Article and Find Full Text PDFBACE1 and presenilin (PS)/γ-secretase are primary proteolytic enzymes responsible for the generation of pathogenic amyloid β-peptides (Aβ) in Alzheimer's disease. We and others have found that β-subunits of the voltage-gated sodium channel (Na(v)βs) also undergo sequential proteolytic cleavages mediated by BACE1 and PS/γ-secretase. In a follow-up study, we reported that elevated BACE1 activity regulates total and surface expression of voltage-gated sodium channels (Na(v)1 channels) and thereby modulates sodium currents in neuronal cells and mouse brains.
View Article and Find Full Text PDF