Wireless radiofrequency rectifiers have the potential to power the billions of "Internet of Things" (IoT) devices currently in use by effectively harnessing ambient electromagnetic radiation. However, the current technology relies on the implementation of rectifiers based on Schottky diodes, which exhibit limited capabilities for high-frequency and low-power applications. Consequently, they require an antenna to capture the incoming signal and amplify the input power, thereby limiting the possibility of miniaturizing devices to the millimeter scale.
View Article and Find Full Text PDFElectrical transport in noncentrosymmetric materials departs from the well-established phenomenological Ohm's law. Instead of a linear relation between current and electric field, a nonlinear conductivity emerges along specific crystallographic directions. This nonlinear transport is fundamentally related to the lack of spatial inversion symmetry.
View Article and Find Full Text PDFThe emergence of symmetry-breaking orders such as ferromagnetism and the weak interlayer bonding in van der Waals materials offers a unique platform to engineer novel heterostructures and tune transport properties like thermal conductivity. Here, we report the experimental and theoretical study of the cross-plane thermal conductivity, κ, of the van der Waals two-dimensional (2D) ferromagnet FeGeTe. We observe an increase in κ with thickness, indicating a diffusive transport regime with ballistic contributions.
View Article and Find Full Text PDFChiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear.
View Article and Find Full Text PDFHere we show that by adjusting the concentration of tetrabutyl ammonium and phosphonium salts in water (≈1.5-2.0 m), hydrophobic solvation triggers the formation of a unique, highly incompressible supramolecular liquid, with a dynamic structure similar to clathrates, involving essentially all H O molecules of the solvent.
View Article and Find Full Text PDFThe interaction of water with small alcohols can be used as a model for understanding hydrophobic solvation of larger and more complex amphiphilic molecules. Despite its apparent simplicity, water/ethanol mixtures show important anomalies in several of their properties, like specific heat or partial molar volume, whose precise origin are still a matter of debate. Here we report high-resolution thermal conductivity, compressibility, and IR-spectroscopy data for water/ethanol solutions showing three distinct regions of solvation, related to changes in the H-bond network.
View Article and Find Full Text PDF