Front Cell Neurosci
January 2024
Targeted electric signal use for disease diagnostics and treatment is emerging as a healthcare game-changer. Besides arrhythmias, treatment-resistant epilepsy and chronic pain, blindness, and perhaps soon vision loss, could be among the pathologies that benefit from bioelectronic medicine. The electroretinogram (ERG) technique has long demonstrated its role in diagnosing eye diseases and early stages of neurodegenerative diseases.
View Article and Find Full Text PDFMitochondrial diseases are among the most prevalent groups of inherited neurological disorders, affecting up to 1 in 5000 adults. Despite the progress achieved on the identification of gene mutations causing mitochondrial pathologies, they cannot be cured so far. Harlequin mice, a relevant model of mitochondrial pathology due to apoptosis inducing factor depletion, suffer from progressive disappearance of retinal ganglion cells leading to optic neuropathy.
View Article and Find Full Text PDFHuman post-natal neurodevelopmental delay is often associated with cerebral alterations that can lead, by themselves or associated with peripheral deficits, to premature death. Here, we report the clinical features of 10 patients from six independent families with mutations in the autosomal YIF1B gene encoding a ubiquitous protein involved in anterograde traffic from the endoplasmic reticulum to the cell membrane, and in Golgi apparatus morphology. The patients displayed global developmental delay, motor delay, visual deficits with brain MRI evidence of ventricle enlargement, myelination alterations and cerebellar atrophy.
View Article and Find Full Text PDFPurpose: Cohen syndrome (CS) is a rare genetic disorder caused by variants of the VPS13B gene. CS patients are affected with a severe form of retinal dystrophy, and in several cases cataracts also develop. The purpose of this study was to investigate the mechanisms and risk factors for cataract in CS, as well as to report on cataract surgeries in CS patients.
View Article and Find Full Text PDFOTX2 is a homeoprotein transcription factor expressed in photoreceptors and bipolar cells in the retina. OTX2, like many other homeoproteins, transfers between cells and exerts non-cell autonomous effects such as promoting the survival of retinal ganglion cells that do not express the protein. Here we used a genetic approach to target extracellular OTX2 in the retina by conditional expression of a secreted single-chain anti-OTX2 antibody.
View Article and Find Full Text PDFUsher syndrome type 1 (USH1) is a major cause of inherited deafness and blindness in humans. The eye disorder is often referred to as retinitis pigmentosa, which is characterized by a secondary cone degeneration following the rod loss. The development of treatments to prevent retinal degeneration has been hampered by the lack of clear evidence for retinal degeneration in mutant mice deficient for the Ush1 genes, which instead faithfully mimic the hearing deficit.
View Article and Find Full Text PDFMitochondrial dysfunction is responsible for hereditary optic neuropathies. We wished to determine whether preserving mitochondrial bioenergetics could prevent optic neuropathy in a reliable model of glaucoma. DBA/2J mice exhibit elevated intraocular pressure, progressive degeneration of their retinal ganglion cells, and optic neuropathy that resembles glaucoma.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
June 2017
High myopia (HM) is one of the main causes of visual impairment and blindness all over the world and an unsolved medical problem. Persons with HM are predisposed to other eye pathologies such as retinal detachment, myopic retinopathy or glaucomatous optic neuropathy, complications that may at least partly result from the extensive liquefaction of the myopic vitreous gel. To identify the involvement of the liquid vitreous in the pathogenesis of HM we here analyzed the vitreous of the recently described highly myopic low density lipoprotein receptor-related protein 2 (Lrp2)-deficient eyes.
View Article and Find Full Text PDFUnlabelled: The HANAC syndrome is caused by mutations in the gene coding for collagen4a1, a major component of blood vessel basement membranes. Ocular symptoms include an increase in blood vessel tortuosity and occasional hemorrhages. To examine how vascular defects can affect neuronal function, we analyzed the retinal phenotype of a HANAC mouse model.
View Article and Find Full Text PDFJ Pathol
December 2016
Dynamic control of endothelial cell junctions is essential for vascular homeostasis and angiogenesis. We recently provided genetic evidence that ANGPTL4 is a key regulator of vascular integrity both during developmental and in hypoxia-induced pathological conditions. The purpose of the present study was to decipher the molecular mechanisms through which ANGPTL4 regulates vascular integrity.
View Article and Find Full Text PDFPurpose: Taurine depletion is known to induce photoreceptor degeneration and was recently found to also trigger retinal ganglion cell (RGC) loss similar to the retinal toxicity of vigabatrin. Our objective was to study the topographical loss of RGCs and cone photoreceptors, with a distinction between the two cone types (S- and L- cones) in an animal model of induced taurine depletion.
Methods: We used the taurine transporter (Tau-T) inhibitor, guanidoethane sulfonate (GES), to induce taurine depletion at a concentration of 1% in the drinking water.
OTX2 (orthodenticle homeobox 2) haplodeficiency causes diverse defects in mammalian visual systems ranging from retinal dysfunction to anophthalmia. We find that the retinal dystrophy of Otx2(+/GFP) heterozygous knockin mice is mainly due to the loss of bipolar cells and consequent deficits in retinal activity. Among bipolar cell types, OFF-cone bipolar subsets, which lack autonomous Otx2 gene expression but receive Otx2 proteins from photoreceptors, degenerate most rapidly in Otx2(+/GFP) mouse retinas, suggesting a neuroprotective effect of the imported Otx2 protein.
View Article and Find Full Text PDFMyopia is a common ocular disorder generally due to increased axial length of the eye-globe. Its extreme form high myopia (HM) is a multifactorial disease leading to retinal and scleral damage, visual impairment or loss and is an important health issue. Mutations in the endocytic receptor LRP2 gene result in Donnai-Barrow (DBS) and Stickler syndromes, both characterized by HM.
View Article and Find Full Text PDFSpectral-Domain Optical Coherence Tomography (SD-OCT) is a widely used method to observe retinal layers and follow pathological events in human. Recently, this technique has been adapted for animal imaging. This non-invasive technology brings a cross-sectional visualization of the retina, which permits to observe precisely each layer.
View Article and Find Full Text PDFAim: Most Duchenne muscular dystrophy patients and the mdx(Cv3) mouse strain, lacking expression of both dystrophins Dp260 and Dp71, show a high attenuation of the dark-adapted electroretinogram (ERG) b-wave amplitude, whereas mice lacking the expression of Dp260 show normal b-wave amplitude. Here, we completed our assessment of whether the sole absence of Dp71 affects the ERG.
Methods: Ganzfeld ERGs were performed on dark-adapted Dp71-null mice and littermates.
In the human, mutations of OTX2 (Orthodenticle homeobox 2 transcription factor) translate into eye malformations of variable expressivity (even between the two eyes of the same individual) and incomplete penetrance, suggesting the existence of subtle thresholds in OTX2 activity. We have addressed this issue by analyzing retinal structure and function in six mutant mice with graded Otx2 activity: Otx2(+/+), Otx2(+/AA), Otx2(+/GFP), Otx2(AA/AA), Otx2(AA/GFP) and Otx2(GFP/GFP). Null mice (Otx2(GFP/GFP)) fail to develop the head and are embryonic lethal, and compound heterozygous Otx2(AA/GFP) mice show a truncated head and die at birth.
View Article and Find Full Text PDFRetinal prostheses are being developed to restore vision in blind patients with photoreceptor degeneration. Electrodes arrays were subretinally implanted in transgenic P23H rats with their photoreceptors degenerated. Electrical stability of the implants was evaluated by long-term monitoring of their impedance changes.
View Article and Find Full Text PDFRetinal ganglion cells (RGCs) are spiking neurons, which send visual information to the brain, through the optic nerve. RGC degeneration occurs in retinal diseases, either as a primary process or secondary to photoreceptor loss. Mechanisms involved in this neuronal degeneration are still unclear and no drugs directly targeting RGC neuroprotection are yet available.
View Article and Find Full Text PDFRetinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease.
View Article and Find Full Text PDFIn 1970s, taurine deficiency was reported to induce photoreceptor degeneration in cats and rats. Recently, we found that taurine deficiency contributes to the retinal toxicity of vigabatrin, an antiepileptic drug. However, in this toxicity, retinal ganglion cells were degenerating in parallel to cone photoreceptors.
View Article and Find Full Text PDFThe Harlequin mutant mouse, characterized by loss of function of apoptosis-inducing factor, represents a reliable genetic model that resembles pathologies caused by human mitochondrial complex I deficiency. Therefore, we extensively characterized the retinal morphology and function of Harlequin mice during the course of neuronal cell death leading to blindness, with the aim of preventing optic atrophy. Retinas and optic nerves from these mice showed an isolated respiratory chain complex I defect correlated with retinal ganglion cell loss, optic atrophy, glial and microglial cell activation.
View Article and Find Full Text PDFBackground: Transplantation as a therapeutic strategy for inherited retinal degeneration has been historically viewed to restore vision as a method by replacing the lost retinal cells and attempting to reconstruct the neural circuitry with stem cells, progenitor cells and mature neural retinal cells.
Methods And Findings: We present evidence for an alternative strategy aimed at preventing the secondary loss of cones, the most crucial photoreceptors for vision, by transplanting normal photoreceptors cells into the eye of the P23H rat, a model of dominant retinitis pigmentosa. We carried out transplantation of photoreceptors or total neural retina in 3-month-old P23H rats and evaluated the function and cell counts 6 months after surgery.
Microglial cells (MCs) are active sensors and reactive phagocytes of neural tissues. They are known to migrate and accumulate in areas of neuronal damage. Thus, microglial locomotion is an essential feature of the inflammatory reaction in neural tissue.
View Article and Find Full Text PDFThe anti-epileptic drug vigabatrin induces an irreversible constriction of the visual field, but is still widely used to treat infantile spasms and some forms of epilepsy. We recently reported that vigabatrin-induced cone damage is due to a taurine deficiency. However, optic atrophy and thus retinal ganglion cell degeneration was also reported in children treated for infantile spasms.
View Article and Find Full Text PDF