Synthetic hydrogel-amorphous calcium phosphate composites are promising candidates to substitute biologically sourced scaffolds for bone repair. While the hydrogel matrix serves as a template for stem cell colonisation, amorphous calcium phosphate s provide mechanical integrity with the potential to stimulate osteogenic differentiation. Here, we utilise composites of poly(ethylene glycol)-based hydrogels and differently stabilised amorphous calcium phosphate to investigate potential effects on attachment and osteogenic differentiation of human mesenchymal stem cells.
View Article and Find Full Text PDFAcellular polymer-calcium phosphate composites are promising bone graft materials. Hydrogels are suitable for providing a temporary matrix, while calcium phosphate minerals serve as ion depots for calcium and phosphate required for de novo bone formation. Crystalline calcium phosphates are stable under biological conditions and are commonly used in such scaffolds.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2018
Hybrid poly(ethylene glycol)-co-peptide hydrogels are a versatile platform for bone regeneration. For the use as injectable scaffolds, a good understanding of reaction kinetics and physical properties is vital. However, these factors have not yet been comprehensively illuminated.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
August 2018
Strategies that enable hydrogel substrates to support cell attachment typically incorporate either entire extracellular matrix proteins or synthetic peptide fragments such as the RGD (arginine-glycine-aspartic acid) motif. Previous studies have carefully analysed how material characteristics can affect single cell morphologies. However, the influence of substrate stiffness and ligand presentation on the spatial organisation of human mesenchymal stem cells (hMSCs) have not yet been examined.
View Article and Find Full Text PDF