Angew Chem Int Ed Engl
August 2023
Mucin glycoproteins are essential components of the mucosal barrier, which protects the host from pathogens. Throughout evolution, bacteria have developed strategies to modulate and penetrate this barrier, and cause virulence by interacting with mucin O-glycans at the epithelial cell-surface. O-fucosylated glycan epitopes on mucins are key ligands of many bacterial lectins.
View Article and Find Full Text PDFIn the last decade, it was discovered that protein mucin-type O-glycosylation and O-GlcNAcylation modify Tyr residues besides the well explored Thr and Ser amino acids. Several glycoproteomic studies have identified α-GalNAc-O-Tyr modifications, and studies propose that β-GlcNAc-O-Tyr also exists as a new group of posttranslational modifications (PTMs). Specific bacterial toxins have further been identified to modify host GTPases with α-GlcNAc-O-Tyr to promote bacterial virulence.
View Article and Find Full Text PDFMUC1 glycopeptides are attractive antigens for anti-cancer vaccine development. One potential drawback in using the native MUC1 glycopeptide for vaccine design is the instability of the O-glycosyl linkage between the glycan and the peptide backbone to glycosidase. To overcome this challenge, a MUC1 glycopeptide mimic has been synthesized with the galactose-galactosamine disaccharide linked with threonine (Thomsen-Friedenreich or Tf antigen) through an unnatural β-glycosyl bond.
View Article and Find Full Text PDFMucin-1 (MUC1) is a highly attractive antigenic target for anticancer vaccines. Naturally existing MUC1 can contain multiple types of O-linked glycans, including the Thomsen-Friedenreich (Tf) antigen and the Sialyl Thomsen-nouveau (STn) antigen. In order to target these antigens as potential anticancer vaccines, MUC1 glycopeptides SAPDT*RPAP (T* is the glycosylation site) bearing the Tf and the STn antigen, respectively, have been synthesized.
View Article and Find Full Text PDFHuman mucin-1 (MUC1) is a highly attractive antigen for the development of anticancer vaccines. However, in human clinical trials of multiple MUC1 based vaccines, despite the generation of anti-MUC1 antibodies, the antibodies often failed to exhibit much binding to tumor presumably due to the challenges in inducing protective immune responses in the immunotolerant environment. To design effective MUC1 based vaccines functioning in immunotolerant hosts, vaccine constructs were first synthesized by covalently linking the powerful bacteriophage Qβ carrier with MUC1 glycopeptides containing 20-22 amino acid residues covering one full length of the tandem repeat region of MUC1.
View Article and Find Full Text PDFDistinct structural changes of the α2,3/α2,6-sialic acid glycosidic linkages on glycoproteins are of importance in cancer biology, inflammatory diseases, and virus tropism. Current glycoproteomic methodologies are, however, not amenable toward high-throughput characterization of sialic acid isomers. To enable such assignments, a mass spectrometry method utilizing synthetic model glycopeptides for the analysis of oxonium ion intensity ratios was developed.
View Article and Find Full Text PDFGlycoprotein research is pivotal for vaccine development and biomarker discovery. Many successful methodologies for reliably increasing the antigenicity toward tumor-associated glycopeptide structures have been reported. Deeper insights into the quality and specificity of the raised polyclonal, humoral reactions are often not addressed, despite the fact that an immunological memory, which produces antibodies with cross-reactivity to epitopes exposed on healthy cells, may cause autoimmune diseases.
View Article and Find Full Text PDFPost-translational glycosylation of proteins play key roles in cellular processes and the site-specific characterisation of glycan structures is critical to understanding these events. Given the challenges regarding identification of glycan isomers, glycoproteomic studies generally rely on the assumption of conserved biosynthetic pathways. However, in a recent study, we found characteristically different HexNAc oxonium ion fragmentation patterns that depend on glycan structure.
View Article and Find Full Text PDFProtein glycosylation plays critical roles in the regulation of diverse biological processes, and determination of glycan structure-function relationships is important to better understand these events. However, characterization of glycan and glycopeptide structural isomers remains challenging and often relies on biosynthetic pathways being conserved. In glycoproteomic analysis with liquid chromatography-tandem mass spectrometry (LC-MS/MS) using collision-induced dissociation (CID), saccharide oxonium ions containing N-acetylhexosamine (HexNAc) residues are prominent.
View Article and Find Full Text PDFBy displaying different O-glycans in a multivalent mode, mucin and mucin-like glycoproteins are involved in a plethora of protein binding events. The understanding of the roles of the glycans and the identification of potential glycan binding proteins are major challenges. To enable future binding studies of mucin glycan and glycopeptide probes, a method that gives flexible and efficient access to all common mucin core-glycosylated amino acids was developed.
View Article and Find Full Text PDF