Inbreeding is a common phenomenon in small, fragmented or isolated populations, typical conditions of many threatened species. In the present paper, we used a new non-invasive approach based on the buccal micronucleus assay to evaluate the possible relationships between inbreeding and genomic damage using the dog as model species. In particular, we assessed the frequencies of micronuclei and other nuclear aberrations in a group of purebred dogs (n = 77), comparing the obtained data with those from a control group represented by mixed breed dogs (n = 75).
View Article and Find Full Text PDFRegular physical activity is considered one of the most valid tools capable of reducing the risk of onset of many diseases in humans. However, it is known that intense physical activity can induce high levels of genomic damage, while moderate exercise can elicit a favorable adaptive response by the organism. We evaluated, by the buccal micronuclei assay, the frequencies of micronuclei, nuclear buds and binucleated cells in a sample of amateur athletes practicing different disciplines, comparing the obtained data with those of subjects who practiced sports just occasionally and subjects that did not practice sport at all.
View Article and Find Full Text PDFTemporal partitioning is reported as one of the main strategies adopted by coexisting mammal species to limit interspecific competition and behavioural interference. In the last decades, camera-trapping surveys have provided valuable insights in assessing temporal niche and activity rhythms of medium and large-sized mammalian species. Conversely, this method has been poorly applied to small rodents.
View Article and Find Full Text PDFLongevity is a complex process controlled by environmental and genetic factors. We evaluated the association of seven drug metabolising and DNA-repair gene polymorphisms with longevity in an Italian cohort. A sample of 756 subjects aged 18-98 was genotyped for (rs1048943, A>G), (rs 1183423000, presence/absence), (rs1601993659, presence/absence), (rs1695, A>G), (rs1799782, C>T), (rs25489, A>G) and (rs2228001, A>C) gene polymorphisms.
View Article and Find Full Text PDF