Publications by authors named "Manuel Sanchez Lopez-Berges"

Article Synopsis
  • - Fungal diseases caused by *Fusarium oxysporum* lead to significant agricultural losses, and controlling these pathogens is challenging due to limited understanding of their nutrient acquisition during host colonization.
  • - The study identifies the transcriptional regulator Mac1 as crucial for copper acquisition in *F. oxysporum*, influencing its growth and ability to infect host plants like tomatoes and other organisms.
  • - By discovering that overexpressing specific copper-related genes can restore pathogenicity in a mac1 mutant, this research opens new avenues for developing strategies to protect crops from fungal infections.
View Article and Find Full Text PDF

is the leading cause of severe mold infections in immunocompromised patients. This common fungus possesses innate attributes that allow it to evade the immune system, including its ability to survive the high copper (Cu) levels in phagosomes. Our previous work has revealed that under high Cu levels, the transcription factor AceA is activated, inducing the expression of the copper exporter CrpA to expel excess Cu.

View Article and Find Full Text PDF

The filamentous fungus Fusarium oxysporum causes vascular wilt disease in a wide range of plant species and opportunistic infections in humans. Previous work suggested that invasive growth in this pathogen is controlled by environmental cues such as pH and nutrient status. Here we investigated the role of Target Of Rapamycin Complex 1 (TORC1), a global regulator of eukaryotic cell growth and development.

View Article and Find Full Text PDF

The airborne fungus causes opportunistic infections in humans with high mortality rates in immunocompromised patients. Previous work established that the bZIP transcription factor HapX is essential for virulence via adaptation to iron limitation by repressing iron-consuming pathways and activating iron acquisition mechanisms. Moreover, HapX was shown to be essential for transcriptional activation of vacuolar iron storage and iron-dependent pathways in response to iron availability.

View Article and Find Full Text PDF

Efficient adaptation to iron starvation is an essential virulence determinant of the most common human mold pathogen, Aspergillus fumigatus. Here, we demonstrate that the cytosolic monothiol glutaredoxin GrxD plays an essential role in iron sensing in this fungus. Our studies revealed that (i) GrxD is essential for growth; (ii) expression of the encoding gene, grxD, is repressed by the transcription factor SreA in iron replete conditions and upregulated during iron starvation; (iii) during iron starvation but not iron sufficiency, GrxD displays predominant nuclear localization; (iv) downregulation of grxD expression results in de-repression of genes involved in iron-dependent pathways and repression of genes involved in iron acquisition during iron starvation, but did not significantly affect these genes during iron sufficiency; (v) GrxD displays protein-protein interaction with components of the cytosolic iron-sulfur cluster biosynthetic machinery, indicating a role in this process, and with the transcription factors SreA and HapX, which mediate iron regulation of iron acquisition and iron-dependent pathways; (vi) UV-Vis spectra of recombinant HapX or the complex of HapX and GrxD indicate coordination of iron-sulfur clusters; (vii) the cysteine required for iron-sulfur cluster coordination in GrxD is in vitro dispensable for interaction with HapX; and (viii) there is a GrxD-independent mechanism for sensing iron sufficiency by HapX; (ix) inactivation of SreA suppresses the lethal effect caused by GrxD inactivation.

View Article and Find Full Text PDF

Forward genetic screens are efficient tools for the dissection of complex biological processes, such as fungal pathogenicity. A transposon tagging system was developed in the vascular wilt fungus Fusarium oxysporum f. sp.

View Article and Find Full Text PDF