Publications by authors named "Manuel Rodriguez-Valle"

Background: Ticks are obligate hematophagous arthropods that synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) associated with the alpha-gal syndrome (AGS) or allergy to mammalian meat consumption.

Research Design And Methods: In this study, we used a proteomics approach to characterize tick proteins in salivary glands (sialome SG), secreted saliva (sialome SA) and with α-Gal modification (alphagalactome SG and SA) in model tick species associated with the AGS in the United States () and Australia (). Selected proteins reactive to sera (IgE) from patients with AGS were identified to advance in the identification of possible proteins associated with the AGS.

View Article and Find Full Text PDF

Venom producing animals are ubiquitously disseminated among vertebrates and invertebrates such as fish, snakes, scorpions, spiders, and ticks. Of the ~890 tick species worldwide, 27 have been confirmed to cause paralysis in mammalian hosts. The Australian paralysis tick () is the most potent paralyzing tick species known.

View Article and Find Full Text PDF

Tick innate immunity involves humoral and cellular responses. Among the humoral effector molecules in ticks are the defensins which are a family of small peptides with a conserved γ-core motif that is crucial for their antimicrobial activity. Defensin families have been identified in several hard and soft tick species.

View Article and Find Full Text PDF

Background: Rhipicephalus sanguineus sensu lato (s.l.) is the most widely distributed ixodid tick and is a vector of major canine and human pathogens.

View Article and Find Full Text PDF

The 9th Tick and Tick-borne Pathogen (TTP9) Conference was held in conjunction with the first Asia Pacific Rickettsia Conference (APRC1) in Cairns, Australia from 27 August until 1 September in 2017. This MDPI Veterinary Sciences Special Issue has been dedicated to selected veterinary science articles from the conference associated with the control of animal diseases in the context of ticks and tick-borne pathogens, including Rickettsia species. The articles presented in this Special Issue include novel developments for the future control of ticks and tick-borne diseases.

View Article and Find Full Text PDF

Ixodes holocyclus, the eastern paralysis tick, is a significant parasite in Australia in terms of animal and human health. However, very little is known about its virome. In this study, next-generation sequencing of I.

View Article and Find Full Text PDF

Tick populations are controlled through the application of chemical pesticides. However, the rise in chemical resistance has prompted the investigation of other control methods such as the use of tick vaccines. Proteomic analysis provides valuable information about the possible function and localization of proteins, as candidate vaccine proteins are often either secreted or localized on the cell-surface membrane.

View Article and Find Full Text PDF

Surface display libraries (SDL) have predominantly been utilized for the screening of peptides, and single-chain variable IgG fragments, however, the use of SDL for the expression and purification of proteins is gaining interest. Prokaryote SDL express proteins within the periplasm, limiting the application of common screening techniques, such as ELISA and FACS, to assess the viability of recombinant toxin before purification. A previous attempt to express a functional holocyclotoxin-1 (HT1) from the Australian paralysis tick (Ixodes holocyclus) using a prokaryotic system was unsuccessful.

View Article and Find Full Text PDF

The Australian paralysis tick (Ixodes holocyclus) secretes neuropathic toxins into saliva that induce host paralysis. Salivary glands and viscera were dissected from fully engorged female I. holocyclus ticks collected from dogs and cats with paralysis symptoms.

View Article and Find Full Text PDF

Tick vaccines have been available for more than 20 years. They are useful and effective control agents when used properly. However, no new products have emerged since the Bm86-based Gavac vaccine was commercialized.

View Article and Find Full Text PDF

Rhipicephalus microplus - the cattle tick - is the most significant ectoparasite in terms of economic impact on livestock as a vector of several pathogens. Efforts have been dedicated to the cattle tick control to diminish its deleterious effects, with focus on the discovery of vaccine candidates, such as BM86, located on the surface of the tick gut epithelial cells. Current research focuses upon the utilization of cDNA and genomic libraries, to screen for other vaccine candidates.

View Article and Find Full Text PDF

To prolong residence on their hosts, ticks secrete many salivary factors that target host defense molecules. In particular, the tick has been shown to produce three salivary glycoproteins named "evasins," which bind to host chemokines, thereby inhibiting the recruitment of leukocytes to the location of the tick bite. Using sequence similarity searches, we have identified 257 new putative evasin sequences encoded by the genomes or salivary or visceral transcriptomes of numerous hard ticks, spanning the genera , , and of the Ixodidae family.

View Article and Find Full Text PDF

Ticks are important vectors of pathogens and secreted neurotoxins with approximately 69 out of 692 tick species having the ability to induce severe toxicoses in their hosts. The Australian paralysis tick (Ixodes holocyclus) is known to be one of the most virulent tick species producing a flaccid paralysis and fatalities caused by a family of neurotoxins known as holocyclotoxins (HTs). The paralysis mechanism of these toxins is temperature dependent and is thought to involve inhibition of acetylcholine levels at the neuromuscular junction.

View Article and Find Full Text PDF

A meeting sponsored by the Bill & Melinda Gates Foundation was held at the Avanti Hotel, Mohammedia, Morocco, July 14-15, 2015. The meeting resulted in the formation of the Cattle Tick Vaccine Consortium (CATVAC).

View Article and Find Full Text PDF

The cattle tick (Rhipicephalus microplus) affects cattle industries in tropical and subtropical countries because it is the vector of babesiosis and anaplasmosis which constitutes a threat to the health of cattle. During blooding feeding, ticks secrete saliva containing a complex of bioactive molecules into the injured site to evade host's defensive responses. Serine protease inhibitors (serpins) are important anti-haemostatic molecules present in tick saliva that are necessary for a successful blood feeding.

View Article and Find Full Text PDF

Background: Rhipicephalus (Boophilus) microplus evades the host's haemostatic system through a complex protein array secreted into tick saliva. Serine protease inhibitors (serpins) conform an important component of saliva which are represented by a large protease inhibitor family in Ixodidae. These secreted and non-secreted inhibitors modulate diverse and essential proteases involved in different physiological processes.

View Article and Find Full Text PDF

Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) ticks cause economic losses for cattle industries throughout tropical and subtropical regions of the world estimated at $US2.5 billion annually. Lack of access to efficacious long-lasting vaccination regimes and increases in tick acaricide resistance have led to the investigation of targets for the development of novel tick vaccines and treatments.

View Article and Find Full Text PDF

The attachment to host skin by Rhipicephalus microplus larvae induces a series of physiological events at the attachment site. The host-parasite interaction might induce a rejection of the larvae, as is frequently observed in Bos taurus indicus cattle, and under certain conditions in Bos taurus taurus cattle. Ticks deactivate the host rejection response by secreting specific proteins and lipids that play an essential role in manipulation of the host immune response.

View Article and Find Full Text PDF

Rhipicephalus microplus is an important bovine ectoparasite, widely distributed in tropical and subtropical regions of the world causing large economic losses to the cattle industry. Its success as an ectoparasite is associated with its capacity to disarm the antihemostatic and anti-inflammatory reactions of the host. Serpins are protease inhibitors with an important role in the modulation of host-parasite interactions.

View Article and Find Full Text PDF

The recombinant Bm86-based tick vaccines have shown their efficacy for the control of cattle ticks, Rhipicephalus (Boophilus) microplus and R. annulatus infestations. However, cattle ticks often co-exist with multi-host ticks such as Hyalomma and Amblyomma species, thus requiring the control of multiple tick infestations for cattle and other hosts.

View Article and Find Full Text PDF

The Rhipicephalus microplus genome is large and complex in structure, making it difficult to assemble a genome sequence and costly to resource the required bioinformatics. In light of this, a consortium of international collaborators was formed to pool resources to begin sequencing this genome. We have acquired and assembled genomic DNA into contigs that represent over 1.

View Article and Find Full Text PDF

Background: Rhipicephalus (Boophilus) microplus (Rmi) a major cattle ectoparasite and tick borne disease vector, impacts on animal welfare and industry productivity. In arthropod research there is an absence of a complete Chelicerate genome, which includes ticks, mites, spiders, scorpions and crustaceans. Model arthropod genomes such as Drosophila and Anopheles are too taxonomically distant for a reference in tick genomic sequence analysis.

View Article and Find Full Text PDF