Attapulgite (ATT) has never been used as a barrier additive in polypropylene (PP). As a filler, ATT should be added in high content to PP. However, that would result in increased costs.
View Article and Find Full Text PDFIn this work, silica nanoparticles were produced in situ, to be embedded eventually in the polyamide layer formed during interfacial polymerization for fabricating thin-film nanocomposite membranes with enhanced performance for dehydrating isopropanol solution. The nanoparticles were synthesized through a sol-gel reaction between 3-aminopropyltrimethoxysilane (APTMOS) and 1,3-cyclohexanediamine (CHDA). Two monomers-CHDA (with APTMOS) and trimesoyl chloride-were reacted on a hydrolyzed polyacrylonitrile (hPAN) support.
View Article and Find Full Text PDFAdding natural biomass to poly(lactic acid) (PLA) as a reinforcing filler is a way to change the properties of PLA. This paper is about preparing PLA/biomass composites by physically melting and blending Chinese Spirits distiller's grains (CSDG) biomass and PLA to optimize the composite performance. Composites of modified PLA (MPLA) with varying amounts of CSDG were also prepared by the melt-mixing method, and unmodified PLA/CSDG composites were used as a control group for comparative analysis.
View Article and Find Full Text PDFA new nanomaterial or nano-filler in the form of multiwalled carbon nanotube-zinc oxide (MWCNT-ZnO) was synthesized for the purpose of modifying poly(butylene adipate-co-terephthalate) (PBAT) and its derivative (modified PBAT or MPBAT) through a melt-blending method (MPBAT was obtained by introducing maleic anhydride groups into PBAT). The effect of the new nano-filler on the properties of resultant nanocomposites was determined from the characterization of mechanical properties, morphology, crystallinity, thermal stability, barrier properties, hydrophilicity, conductivity, antibacterial property, and biodegradability. The results showed that MPBAT nanocomposites had stronger mechanical properties, better barrier properties, and higher electrical conductivity than PBAT nanocomposites.
View Article and Find Full Text PDFA thin-film composite (TFC) polyurea membrane was fabricated for the dehydration of an aqueous tetrahydrofuran (THF) solution through interfacial polymerization, wherein polyethyleneimine (a water-soluble amine monomer) and m-xylene diisocyanate (an oil-soluble diisocyanate monomer) were reacted on the surface of a modified polyacrylonitrile (mPAN) substrate. Cosolvents were used to tailor the membrane properties and increase the membrane permeation flux. Four types of alcohols that differed in the number of carbon (methanol, ethanol, isopropanol, and tert-butanol) were added as cosolvents, serving as swelling agents, to the aqueous-phase monomer solution, and their effect on the membrane properties and pervaporation separation was discussed.
View Article and Find Full Text PDFThin-film composite (TFC) polyamide membranes formed through interfacial polymerization can function more efficiently by tuning the chemical structure of participating monomers. Accordingly, three kinds of diamine monomers were considered to take part in interfacial polymerization. Each diamine was reacted with trimesoyl chloride (TMC) to manufacture TFC polyamide nanofiltration (NF)-like forward osmosis (FO) membranes.
View Article and Find Full Text PDFGraphene that consists of less than 10 layers is expensive; moreover, it tends to agglomerate. These disadvantages restrict its utility. In this regard, the present study aimed to reduce the number of layers of a functionalized graphene (FG) with 10-30 layers to less than 10 layers by using an ultrasonic processor.
View Article and Find Full Text PDF