Chronic wounds affect over 6.5 million Americans and are notoriously difficult to treat. Suboptimal oxygenation of the wound bed is one of the most critical and treatable wound management factors, but existing oxygenation systems do not enable concurrent measurement and delivery of oxygen in a convenient wearable platform.
View Article and Find Full Text PDFA novel and flexible oxygen sensing patch was successfully developed for wearable, industrial, food packaging, pharmaceutical and biomedical applications using a cost-efficient and rapid prototypable additive inkjet print manufacturing process. An oxygen sensitive ink was formulated by dissolving ruthenium dye and ethyl cellulose polymer in ethanol in a 1 : 1 : 98 (w/w/w) ratio. The patch was fabricated by depositing the oxygen sensitive ink on a flexible parchment paper substrate using an inkjet printing process.
View Article and Find Full Text PDFIn this paper, we present a disposable, colorimetric, user-friendly and mass-customizable dermal patch for chronological collection and discrete real-time in situ measurement of sweat secretion over a small area of skin. The patch consists of a laminated filter paper patterned into radially arranged channels/fingers with water-activated dyes at their tips. As channels are filled during perspiration, their tips change color once fully saturated, providing easily identifiable levels of water loss which in turn can be mapped to personal dehydration levels.
View Article and Find Full Text PDFIn this work, we present a laser-based fabrication technique for direct patterning of micro-channels consisting of interconnected micro-cracks on soda-lime glass. Using a CO laser to deposit energy at a linear rate of 18.75 to 93.
View Article and Find Full Text PDFThis work presents a low-cost, passive, flexible, polymeric pump for topical drug delivery which uses wound pH as a trigger for localized drug release. Its operation relies on a pH-responsive hydrogel actuator which swells when exposed to the alkaline pH of an infected wound. The pump enables slow release (<0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
In this work, we present a systematic study of laser processing of metallized papers (MPs) as a simple and scalable alternative to conventional photolithography-based processes and printing technologies. Two laser-processing methods are examined in terms of selectivity for the removal of the conductive aluminum film (25 nm) of an MP substrate; these processes, namely direct and indirect laser ablation (DLA and ILA), operate at wavelengths of 1.06 μm (neodymium-doped yttrium aluminum garnet) and 10.
View Article and Find Full Text PDFOphthalmic Plast Reconstr Surg
December 2019
Purpose: The aim of this study was to evaluate the efficacy of the nonporous polyethylene barrier sheet as an alternative for nylon foil (SupraFOIL) implants in repair of orbital fractures.
Methods: This is a prospective, case series using the Stryker 0.4-mm-thick nonporous polyethylene barrier sheet in all patients over the age of 18 years presenting with orbital fractures from December 2014 to June 2015.
Chronic wounds are a major health concern and they affect the lives of more than 25 million people in the United States. They are susceptible to infection and are the leading cause of nontraumatic limb amputations worldwide. The wound environment is dynamic, but their healing rate can be enhanced by administration of therapies at the right time.
View Article and Find Full Text PDFOxidative stress-mediated cancer progression depends on exposure to reactive oxygen species (ROS) in the extracellular matrix (ECM). To study the impact of ROS levels on preinvasive breast cancer cells as a function of ECM characteristics, we created a gradient-on-a-chip in which HO progressively mixes with the cell culture medium within connected microchannels and diffuses upward into the ECM of the open cell culture window. The device utilizes a paper-based microfluidic bifurcating mixer insert to prevent leakage and favor an even fluid distribution.
View Article and Find Full Text PDFWe demonstrate, for the first time, a facile and low-cost approach for integrating highly flexible and stretchable microfluidic channels into textile-based substrates. The integration of the microfluidics is accomplished by means of directly embroidering surface-functionalized micro-tubing in a zigzag/meander pattern and subsequently coating it with an elastomer for irreversible bonding. We show the utility of the embroidered micro-tubing by developing robust and stretchable drug-delivery and electronic devices.
View Article and Find Full Text PDFWe hypothesized that the addition of silver nanoparticles (AgNP) to a dermal substrate would impart antibacterial properties without inhibiting the proliferation of contained cells. Our in vitro model was based on the commercial substrate, Integra. The substrate was prepared by simple immersion into 0 to 1% suspension of AgNP (75 or 200 nm diameter) followed by rinsing for 20 minutes and sterilization under an ultraviolet C lamp.
View Article and Find Full Text PDFThe development of stretchable sensors has recently attracted considerable attention. These sensors have been used in wearable and robotics applications, such as personalized health-monitoring, motion detection, and human-machine interfaces. Herein, we report on a highly stretchable electrochemical pH sensor for wearable point-of-care applications that consists of a pH-sensitive working electrode and a liquid-junction-free reference electrode, in which the stretchable conductive interconnections are fabricated by laser carbonizing and micromachining of a polyimide sheet bonded to an Ecoflex substrate.
View Article and Find Full Text PDFCulturing cells at the air-liquid interface (ALI) is essential for creating functional in vitro models of lung tissues. We present the use of direct-patterned laser-treated hydrophobic paper as an effective semi-permeable membrane, ideal for ALI cell culture. The surface properties of the paper are modified through a selective CO laser-assisted treatment to create a unique porous substrate with hydrophilic regions that regulate fluid diffusion and cell attachment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2016
In this Research Article, we demonstrate a facile method for the fabrication of porous-carbon/silver nanocomposites using direct laser writing on polymeric substrates. Our technique uses a combination of CO2 laser-induced carbonization and selective silver deposition on a polyimide sheet to create flexible highly conductive traces. The localized laser irradiation selectively converts the polyimide to a highly porous and conductive carbonized film with superhydrophilic wettability.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
September 2015
In this paper, we present a smart capsule for location-specific drug release in the gastrointestinal tract. Once activated through a magnetic proximity fuse, the capsule opens up and releases its powdered payload in a location specified by an implanted miniature magnetic marker or an externally worn larger magnet. The capsule (9 mm × 26 mm) comprises of two compartments: one contains a charged capacitor and a reed switch, while the second one houses the drug reservoir capped by a taut nylon thread intertwined with a nichrome wire.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2015
In this paper, we present a simple and low-cost technique for fabricating highly stretchable (up to 100% strain) and sensitive (gauge factor of up to 20 000) strain sensors. Our technique is based on transfer and embedment of carbonized patterns created through selective laser pyrolization of thermoset polymers, such as polyimide, into elastomeric substrates (e.g.
View Article and Find Full Text PDFBiodegradable nanofibrous polymeric substrates are used to fabricate suturable, elastic, and flexible electronics and sensors. The fibrous microstructure of the substrate makes it permeable to gas and liquid and facilitates the patterning process. As a proof-of-principle, temperature and strain sensors are fabricated on this elastic substrate and tested in vitro.
View Article and Find Full Text PDFChronic nonhealing wounds are a major source of morbidity and mortality in bed-ridden and diabetic patients. Monitoring of physical and chemical parameters important in wound healing and remodeling process can be of immense benefit for optimum management of such lesions. Low-cost flexible polymeric and paper-based substrates are attractive platforms for fabrication of such sensors.
View Article and Find Full Text PDFWe present a disease-on-a-chip model in which cancer grows within phenotypically normal breast luminal epithelium on semicircular acrylic support mimicking portions of mammary ducts. The cells from tumor nodules developing within these hemichannels are morphologically distinct from their counterparts cultured on flat surfaces. Moreover, tumor nodules cocultured with the luminal epithelium in hemichannels display a different anticancer drug sensitivity compared to nodules cocultured with the luminal epithelium on a flat surface and to monocultures of tumor nodules.
View Article and Find Full Text PDFAdv Drug Deliv Rev
November 2012
Low cost manufacturing of polymeric microdevices for transdermal and subcutaneous drug delivery is slated to have a major impact on next generation devices for administration of biopharmaceuticals and other emerging new formulations. These devices range in complexity from simple microneedle arrays to more complicated systems incorporating micropumps, micro-reservoirs, on-board sensors, and electronic intelligence. In this paper, we review devices currently in the market and those in the earlier stages of research and development.
View Article and Find Full Text PDFWe present a microorganism-powered thermopneumatic pump that utilizes temperature-dependent slow-kinetics gas (carbon dioxide) generating fermentation of yeast as a pressure source. The pump consists of stacked layers of polydimethylsiloxane (PDMS) and a silicon substrate that form a drug reservoir, and a yeast-solution-filled working chamber. The pump operates by the displacement of a drug due to the generation of gas produced via yeast fermentation carried out at skin temperatures.
View Article and Find Full Text PDFIn this issue of Journal of Diabetes Science and Technology, Zisser and collegues describe two inexpensive methods for accurate measurement of dosage delivered by OmniPod insulin pump. The first method is based on imaging a meniscus movement in a micro-pipette and using simple image analysis; the second relies on using a digital microscope to measure the volume of a dispensed droplet while it is still attached to the cannula tip. Both methods produce accurate measurements for doses >0.
View Article and Find Full Text PDFBackground: Regadenoson is a coronary vasodilator that causes tachycardia via activation of the sympathetic nervous system. We determined whether β(1)-adrenergic blockade can attenuate tachycardia without significantly reducing coronary vasodilation induced by regadenoson.
Methods And Results: Hemodynamics and coronary blood flow (CBF) were measured in conscious dogs.
J Cardiovasc Pharmacol
June 2011
Effects of ranolazine alone and in the presence of phenylephrine (PE) or isoproterenol (ISO) on hemodynamics, coronary blood flow and heart rate (HR) in the absence and presence of hexamethonium (a ganglionic blocker) were studied in conscious dogs. Ranolazine (0.4, 1.
View Article and Find Full Text PDF