Publications by authors named "Manuel Nicolas"

Forests are undergoing increasing risks of drought-induced tree mortality. Species replacement patterns following mortality may have a significant impact on the global carbon cycle. Among major hardwoods, deciduous oaks (Quercus spp.

View Article and Find Full Text PDF

Radionuclides I (t = 15.7 × 10 years) and I (t = 8.02 days) are both introduced into the environment as a result of nuclear human activities.

View Article and Find Full Text PDF

Differences in the source and behaviour of I compared to I isotopes have been described for a variety of surface environments, but little is known about the cycling rates of each isotope in terrestrial ecosystems. We developed a compartment model of the iodine cycle in a forest ecosystem, with a labile and non-labile pool to simplify the complex fate of iodine in the forest floor and soil. Simulations were performed using atmospheric I and I inputs for sites differing in climate, vegetation, and soil.

View Article and Find Full Text PDF

Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies link delayed tree growth recovery from droughts to increased tree mortality in future droughts, raising concerns about forest health as droughts become more frequent.
  • Researchers analyzed tree-ring data for 1689 oak trees to determine how climate factors, particularly precipitation, affect growth recovery after extreme droughts.
  • Results revealed that while these oak species can show rapid recovery after summer droughts, they struggle to regain pre-drought growth levels after spring droughts, indicating vulnerability even in drought-tolerant species.
View Article and Find Full Text PDF

Selenium is a trace element and an essential nutrient. Its long-lived radioisotope, selenium 79 is of potential radio-ecological concern in surface environment of deep geological repository for high-level radioactive waste. In this study, the influence of environmental, climatic and geochemical conditions on stable Se (as a surrogate of Se) accumulation was statistically assessed (PCA analysis, Kruskall-Wallis and Spearman tests) based on the analysis of its concentration in litterfall, humus, and soil samples collected at 51 forest sites located in France.

View Article and Find Full Text PDF

The spatial distribution and seasonal variations of atmospheric iodine (I), selenium (Se) and caesium (Cs) depositions remain unclear and this precludes adequate inputs for biogeochemical models. We quantified total concentrations and fluxes of these elements in rainfalls from 27 monitoring sites in France with contrasted climatic conditions; monthly measurements were taken over one year (starting in 2016/09). Since speciation of I and Se can impact their behaviour in the environment, analysis of their inorganic compounds was also conducted.

View Article and Find Full Text PDF

Estimation of the canopy influence on atmospheric inputs of iodine (I), selenium (Se) and caesium (Cs) in terrestrial ecosystems is an essential condition for appropriate biogeochemical models. However, the processes involved in rain composition modifications after its passage through forest canopy have been barely studied for these elements. We monitored I, Se and Cs concentrations in both rainfall and throughfall of fourteen French forested sites throughout one year, and estimated dry deposition and canopy exchange fluxes for these elements, as well as speciation of I and Se.

View Article and Find Full Text PDF

Due to its longevity, radioisotope I is a health concern following potential releases in the environment which raises questions about residence and exposure times relevant for risk assessments. We determined I concentrations (as a surrogate for I) in a series of French forest soils (i.e.

View Article and Find Full Text PDF

In many perennial wind-pollinated plants, the dynamics of seed production is commonly known to be highly fluctuating from year to year and synchronised among individuals within populations. The proximate causes of such seeding dynamics, called masting, are still poorly understood in oak species that are widespread in the northern hemisphere, and whose fruiting dynamics dramatically impacts forest regeneration and biodiversity. Combining long-term surveys of oak airborne pollen amount and acorn production over large-scale field networks in temperate areas, and a mechanistic modelling approach, we found that the pollen dynamics is the key driver of oak masting.

View Article and Find Full Text PDF

Change history: In the HTML version of this Article, author 'Filipa Cox' had no affiliation in the author list, although she was correctly associated with affiliation 3 in the PDF. In addition, the blue circles for 'oak' were missing from Extended Data Fig. 1.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on ectomycorrhizal fungi in European forests, aiming to understand the factors influencing their diversity and abundance across large areas.
  • Researchers identified 38 different variables, including host species and environmental factors, that affect ectomycorrhizal diversity, establishing critical thresholds for community changes.
  • Findings suggest that host and environmental factors are key in explaining ectomycorrhizal diversity, and highlight the need to reassess current ecosystem assessment tools while recognizing the significance of belowground specificity and adaptability.
View Article and Find Full Text PDF

The changes in reproductive phenology (i.e. timing of flowering and fruiting) observed in recent decades demonstrate that tree reproduction has already been altered by climate change.

View Article and Find Full Text PDF

Alien invasive species can affect large areas, often with wide-ranging impacts on ecosystem structure, function, and services. is a widespread invader of European temperate forests, where it tends to form homogeneous stands and limits recruitment of indigenous trees. We hypotesized that invasion by would be reflected in the nutrient contents of the native species' leaves and in the respiration of invaded plots as efficient resource uptake and changes in nutrient cycling by probably underly its aggressive invasiveness.

View Article and Find Full Text PDF

The aim of this study was to assess whether French forest soils are sources or sinks of carbon and to quantify changes in soil organic carbon (SOC) stocks over time by resampling soil in long-term forest monitoring plots. Within each plot, and for each survey, soils were sampled at five points selected in five subplots and divided into layers. Composite samples were produced for each layer and subplot, then analysed for mass, bulk density and SOC.

View Article and Find Full Text PDF

Masting, a breeding strategy common in perennial plants, is defined by seed production that is highly variable over years and synchronized at the population level. Resource budget models (RBMs) proposed that masting relies on two processes: (i) the depletion of plant reserves following high fruiting levels, which leads to marked temporal fluctuations in fruiting; and (ii) outcross pollination that synchronizes seed crops among neighboring trees. We revisited the RBM approach to examine the extent to which masting could be impacted by the degree of pollination efficiency, by taking into account various logistic relationships between pollination success and pollen availability.

View Article and Find Full Text PDF

A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities.

View Article and Find Full Text PDF

Ectomycorrhizal fungi are major ecological players in temperate forests, but they are rarely used in measures of forest condition because large-scale, high-resolution, standardized and replicated belowground data are scarce. We carried out an analysis of ectomycorrhizas at 22 intensively monitored long-term oak plots, across nine European countries, covering complex natural and anthropogenic environmental gradients. We found that at large scales, mycorrhizal richness and evenness declined with decreasing soil pH and root density, and with increasing atmospheric nitrogen deposition.

View Article and Find Full Text PDF

The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth-limiting nutrients and to assess changes in tree nutrition during the past two decades.

View Article and Find Full Text PDF

Recent studies have shown that extensive chlorination of natural organic matter significantly affects chlorine (Cl) residence time in soils. This natural biogeochemical process must be considered when developing the conceptual models used as the basis for safety assessments regarding the potential health impacts of 36-chlorine released from present and planned radioactive waste disposal facilities. In this study, we surveyed 51 French forested areas to determine the variability in chlorine speciation and storage in soils.

View Article and Find Full Text PDF

There is a growing body of evidence suggesting that the relationships between gene variability and common disease are more complex than initially thought and require the exploration of the whole polymorphism of candidate genes as well as several genes belonging to biological pathways. When the number of polymorphisms is relatively large and the structure of the relationships among them complex, the use of data mining tools to extract the relevant information is a necessity. Here, we propose an automated method for the detection of informative combined effects (DICE) among several polymorphisms (and nongenetic covariates) within the framework of association studies.

View Article and Find Full Text PDF