Publications by authors named "Manuel Merkel"

3D-printing increased in significance for biotechnological research as new applications like lab-on-a-chip systems, cell culture devices or 3D-printed foods were uncovered. Besides mammalian cell culture, only few of those applications focus on the cultivation of microorganisms and none of these make use of the advantages of perfusion systems. One example for applying 3D-printing for bioreactor development is the microbial utilization of alternative substrates derived from lignocellulose, where dilute carbon concentrations and harmful substances present a major challenge.

View Article and Find Full Text PDF

Background: Itaconic acid is a promising platform chemical for a bio-based polymer industry. Today, itaconic acid is biotechnologically produced with Aspergillus terreus at industrial scale from sugars. The production of fuels but also of chemicals from food substrates is a dilemma since future processes should rely on carbon sources which do not compete for food or feed.

View Article and Find Full Text PDF

To date, most bio-based products of industrial biotechnology stem from sugar-based carbon sources originating from food and feed competing resources. Exemplary for bioproducts converted from glucose, the potential C5 platform chemical itaconic acid is presently produced by the filamentous fungus Aspergillus terreus. Here, an engineered strain of the industrial platform organism Corynebacterium glutamicum ATCC 13032 was used for acetate-based production of itaconic acid to overcome current production difficulties.

View Article and Find Full Text PDF

Acetate represents a promising alternative carbon source for future industrial biotechnology. In this study, the high potential of Corynebacterium glutamicum for utilizing acetate as sole carbon source was demonstrated. Batch culture studies revealed that C.

View Article and Find Full Text PDF

Currently, most biotechnological products are based on microbial conversion of carbohydrate substrates that are predominantly generated from sugar- or starch-containing plants. However, direct competitive uses of these feedstocks in the food and feed industry represent a dilemma, so using alternative carbon sources has become increasingly important in industrial biotechnology. A promising alternative carbon source that may be generated in substantial amounts from lignocellulosic biomass and C1 gases is acetate.

View Article and Find Full Text PDF