Publications by authors named "Manuel Medarde"

The low aqueous solubility of colchicine site antimitotic agents, of which the trimethoxyphenyl (A ring) is a heavy contributor, is a serious drawback in their clinical development. We have designed new A ring analogs with chameleonic masked polar amino groups able to increase aqueous solubility and also behave as non-polar through intramolecular hydrogen bonds when bound to tubulin. We have incorporated these new A rings in several scaffolds (sulfonamides, combretastatins, phenstatins, isocombretastatins), synthesized, and assayed 43 representatives.

View Article and Find Full Text PDF

Searching for improved indolesulfonamides with higher polarities, 45 new analogues with modifications on the sulfonamide nitrogen, the methoxyaniline, and/or the indole 3-position were synthesised. They show submicromolar to nanomolar antiproliferative IC values against four human tumour cell lines and they are not P-glycoprotein substrates as their potencies against HeLa cells did not improve upon cotreatment with multidrug resistance (MDR) inhibitors. The compounds inhibit tubulin polymerisation and in cells, thus causing a mitotic arrest followed by apoptosis as shown by cell cycle distribution studies.

View Article and Find Full Text PDF

Thirty seven -(5-methoxyphenyl)-4-methoxybenzenesulphonamide with methoxy or/and bromo substitutions (series 1-4) and with different substituents on the sulphonamide nitrogen have been synthesised. 21 showed sub-micromolar cytotoxicity against HeLa and HT-29 human tumour cell lines, and were particularly effective against MCF7. The most potent series has 2,5-dimethoxyanilines, especially the 4-brominated compounds -.

View Article and Find Full Text PDF

New drugs against visceral leishmaniasis with mechanisms of action differing from existing treatments and with adequate cost, stability, and properties are urgently needed. No antitubulin drug is currently in the clinic against Leishmania infantum, the causative agent of visceral leishmaniasis in the Mediterranean area. We have designed and synthesized a focused library of 350 compounds against the Leishmania tubulin based on the structure-activity relationship (SAR) and sequence differences between host and parasite.

View Article and Find Full Text PDF

Pan-Gyn cancers entail 1 in 5 cancer cases worldwide, breast cancer being the most commonly diagnosed and responsible for most cancer deaths in women. The high incidence and mortality of these malignancies, together with the handicaps of taxanes-first-line treatments-turn the development of alternative therapeutics into an urgency. Taxanes exhibit low water solubility that require formulations that involve side effects.

View Article and Find Full Text PDF

Isocombretastatins are the not isomerizable 1,1-diarylethene isomers of combretastatins. Both families of antimitotics are poorly soluble and new analogs with improved water solubility are needed. The ubiquitous 3,4,5-trimethoxyphenyl ring and most of its replacements contribute to the solubility problem.

View Article and Find Full Text PDF

Colchicine site antimitotic agents typically suffer from low aqueous solubilities and are formulated as phosphate prodrugs of phenolic groups. These hydroxyl groups are the aim of metabolic transformations leading to resistance. There is an urgent need for more intrinsically soluble analogues lacking these hydroxyl groups.

View Article and Find Full Text PDF

Colchicine site ligands suffer from low aqueous solubility due to the highly hydrophobic nature of the binding site. A new strategy for increasing molecular polarity without exposing polar groups-termed masked polar group incorporation (MPGI)-was devised and applied to nitrogenated combretastatin analogues. Bulky substituents to the pyridine nitrogen hinder it from the hydrophobic pocket while increasing molecular polarity.

View Article and Find Full Text PDF

Tubulin, the microtubules and their dynamic behavior are amongst the most successful antitumor, antifungal, antiparasitic, and herbicidal drug targets. Sulfonamides are exemplary drugs with applications in the clinic, in veterinary and in the agrochemical industry. This review summarizes the actual state and recent progress of both fields looking from the double point of view of the target and its drugs, with special focus onto the structural aspects.

View Article and Find Full Text PDF

Resistance to combretastatin A-4 is mediated by metabolic modification of the phenolic hydroxyl and ether groups of the 3-hydroxy-4-methoxyphenyl (B ring). Replacement of the B ring of combretastatin A-4 by a N-methyl-5-indolyl reduces tubulin polymerization inhibition (TPI) and cytotoxicity against human cancer cell lines but cyano, methoxycarbonyl, formyl, and hydroxyiminomethyl substitutions at the indole 3-position restores potent TPI and cytotoxicity against sensitive human cancer cell lines. These highly potent substituted derivatives displayed low nanomolar cytotoxicity against several human cancer cell lines due to tubulin inhibition, as shown by cell cycle analysis, confocal microscopy, and tubulin polymerization inhibitory activity studies, and promoted cell killing mediated by caspase-3 activation.

View Article and Find Full Text PDF

We have synthesized and assayed dimethylaminophenyl, pyrrolidin-1-ylphenyl and carbazole containing phenstatins and isocombretastatins as analogues of the highly potent indoleisocombretastatins with extended or reduced ring sizes. This is an attempt to explore beyond the structural constraints of the X-ray crystal structures the zone of the colchicine site where the tropolone ring of colchicine binds to tubulin (zone 1). The isocombretastatins display up to 30 fold increased water solubility when compared with combretastatin A-4, potent inhibition of tubulin polymerization, and nanomolar cytotoxicities against several human cancer cell lines irrespective of the size of the B ring.

View Article and Find Full Text PDF

Colchicine site ligands have proved to be potent inhibitors of tubulin polymerization, which leads them not only to display cytotoxic effects but also vascular disrupting effects on tumour neovasculature. In recent years, many compounds have been designed, synthesized and evaluated in order to improve the potency, stability and physicochemical properties of these agents with the aim of developing an agent that could reach the clinical assay level. Here we analyze the eleven X-ray structures of tubulin in complex with ligands at the colchicine site by dividing it into four different zones of interaction, we review the new compounds that have appeared in the literature since 2008 and that were designed based on any of these X-ray structures and, finally, we describe our latest results in the design of new potent antimitotic indole derivatives that have confirmed the flexibility of one of the zones described for the colchicine site.

View Article and Find Full Text PDF

The structures of a new family of macrocyclic analogues of combretastatins B combining oxygenated substituents on the phenyl rings and indole rings are described. The effects of the stereochemistry, of the length of the spacer linking both aryl groups, and of the decoration of the macrocycles on the kinematics of the system have been studied by means of NMR studies at several temperatures and in different solvents combined with theoretical studies including Monte Carlo conformational searches and molecular dynamics simulations at different temperatures. The new indole macrocycles provide a more rigid view of this kind of macrocycles than that previously held.

View Article and Find Full Text PDF

Colchicine site ligands with indole B rings are potent tubulin polymerization inhibitors. Structural modifications at the indole 3-position of 1-methyl-5-indolyl-based isocombretastatins (1,1-diarylethenes) and phenstatins endowed them with anchors for further derivatization and resulted in highly potent compounds. The substituted derivatives displayed potent cytotoxicity against several human cancer cell lines due to tubulin inhibition, as shown by cell cycle analysis, confocal microscopy, and tubulin polymerization inhibitory activity studies and promoted cell killing mediated by caspase-3 activation.

View Article and Find Full Text PDF

The synthesis of a new family of methoxy-substituted [2.7]- and [2.8]paracyclophanes linked by 3-oxapentamethylene-1,5-dioxy and hexamethylene-1,6-dioxy bridges has been carried out by using the McMurry methodology.

View Article and Find Full Text PDF

A new family of phenstatin analogues has been synthesized and assayed. This family simultaneously incorporates modifications of the A-ring (replacement of the 3,4,5-trimethoxyphenyl by the 2,3,4-trimethoxyphenyl arrangement), B-ring (N-alkyl-5-indolyl) and conversion of the Oxygen keto group into a substituted nitrogen (oximes, hydrazones, and their acetylderivatives). The conjunction of all this changes greatly diminishes the antimitotic and antiproliferative activities, but the maintenance of the keto bridge produces a potent analogue with the unusual 2,3,4-trimethoxyphenyl moiety.

View Article and Find Full Text PDF

Isocombretastatins A are 1,1-diarylethene isomers of combretastatins A. We have synthesized the isomers of combretastatin A-4, deoxycombretastatin A-4, 3-amino-deoxycombretastatin A-4 (AVE-8063), naphthylcombretastatin and the N-methyl- and N-ethyl-5-indolyl analogues of combretastatin A-4. Analogues with a 2,3,4-trimethoxyphenyl ring instead of the 3,4,5-trimethoxyphenyl ring have also been prepared.

View Article and Find Full Text PDF

A new family of naphthalenic analogues of phenstatins with modifications on the ketone-bridge has been synthesised. The synthesised compounds have been assayed for tubulin polymerisation inhibitory activity as well as for cytotoxic activity against cancer cell lines. The naphthalene has been confirmed as a good surrogate for the isovanillin moiety (3-hydroxy-4-methoxyphenyl) of phenstatin, when combined with the 3,4,5-trimethoxyphenyl ring, but not when combines with the 2,3,4-trimethoxyphenyl ring.

View Article and Find Full Text PDF

We describe the synthesis and biological evaluation of a series of diarylmethyloxime and diarylmethylhydrazone analogues that contain an indole ring and different modifications on the nitrogen of the bridge. Several compounds showed potent tubulin polymerization inhibitory action as well as cytotoxic activity against cancer cell lines. The N-methyl-5-indolyl substituted analogues are more potent than ethyl substituted ones.

View Article and Find Full Text PDF

The reactivity of 6-(nitrophenyl or trimethoxyphenyl)-4-tert-butyldimethyl- siloxy-1,2,3,6-tetrahydropyridine derivatives with hydrazines under acid conditions is described. The structure of the products isolated - hydrazones, pyrazolines or pyridazinones - depended on the conditions used. In addition, a systematic study of the reaction outcomes was carried out by introducing variations on the substituents of the tetrahydropyridine ring.

View Article and Find Full Text PDF

New analogues of combretastatins have been evaluated as inhibitors of tubulin polymerization. These compounds present a macrocyclic structure, in which the para positions of the aromatic moieties have been linked by a 5- or 6-atoms chain, in order to produce a conformational restriction. This could contribute to determine the active conformation for these ligands.

View Article and Find Full Text PDF

A new family of diphenylethanes has been synthesized as conformationally restricted analogues of antimitotic combretastatins. The two phenyl rings are linked between the para-phenolic positions through a 3-oxapentamethylene or hexamethylene chain. The key macrocyclization step was achieved in moderate yields by using an intramolecular McMurry pinacol coupling of linked aromatic dialdehydes, except for the nitro-substituted compounds.

View Article and Find Full Text PDF

Novel phenstatin analogues with a 2-naphthyl moiety combined with either a 2,3,4- or a 3,4,5-trimethoxyphenyl ring have been synthesized, and their tubulin polymerization inhibiting and cytotoxic activities have been evaluated. The 2-naphthyl ring is a better replacement for the 3-hydroxy-4-methoxyphenyl ring in the phenstatin series than in the combretastatin series. For the naphthylphenstatins, the carbonyl is required, and the preferred orientation of the trimethoxyphenyl ring is the one found in combretastatins.

View Article and Find Full Text PDF

To obtain novel drugs able to inhibit transporters involved in bile acid uptake, three compounds were synthesized by conjugating N-(3-aminopropyl)-1,3-propanediamine (PA) with one (BAPA-3), two (BAPA-6), or three (BAPA-8) moieties of glycocholic acid (GC) through their carboxylic group. The expected net charge in aqueous solutions was 2+ (BAPA-3), 1+ (BAPA-6), and 0 (BAPA-8). They were purified by liquid chromatography and their purity checked by HPLC before being chemically characterized by elemental analysis, NMR, and FAB-MS.

View Article and Find Full Text PDF

Drug targeting may contribute to overcoming resistance to chemotherapy and to reducing side effects. Here, by conjugating a nitrogenated base (NB) to the side chain of a bile acid (BA) moiety, we have synthesized and evaluated six novel compounds, designated BANB-1 to -6, with potential cytostatic activity and vectoriality toward enterohepatic tumors. These compounds were purified by liquid chromatography and their purity was checked by TLC and HPLC before being chemically characterized using IR, (1)H/(13)C NMR and FAB-MS.

View Article and Find Full Text PDF