Poor understanding of the cellular and molecular basis of clinical and genetic heterogeneity in progressive multiple sclerosis (MS) has hindered the search for new effective therapies. To address this gap, we analyzed 632,000 single-nucleus RNA sequencing profiles from 156 brain tissue samples of MS and control donors to examine inter- and intra-donor heterogeneity. We found distinct cell type-specific gene expression changes between MS gray and white matter, highlighting clear pathology differences.
View Article and Find Full Text PDFThe occurrence of B cell aggregates within the central nervous system (CNS) has prompted the investigation of the potential sources of pathogenic B cell and T cell responses in a subgroup of secondary progressive multiple sclerosis (MS) patients. Nevertheless, the expression profile of molecules associated with these aggregates and their role in aggregate development and persistence is poorly described. Here, we focused on the expression pattern of osteopontin (OPN), which is a well-described cytokine, in MS brain tissue.
View Article and Find Full Text PDFThere has been a growing interest in the presence and role of B cell aggregates within the central nervous system of multiple sclerosis patients. However, very little is known about the expression profile of molecules associated with these aggregates and how they might be influencing aggregate development or persistence in the brain. The current study focuses on the effect of matrix metalloproteinase-3, which is associated with B cell aggregates in autopsied multiple sclerosis brain tissue, on B cells.
View Article and Find Full Text PDFTo date, most expression quantitative trait loci (eQTL) studies, which investigate how genetic variants contribute to gene expression, have been performed in heterogeneous brain tissues rather than specific cell types. In this study, we performed an eQTL analysis using single-nuclei RNA sequencing from 192 individuals in eight brain cell types derived from the prefrontal cortex, temporal cortex and white matter. We identified 7,607 eGenes, a substantial fraction (46%, 3,537/7,607) of which show cell-type-specific effects, with strongest effects in microglia.
View Article and Find Full Text PDFOptic neuritis, a primary clinical manifestation commonly observed in multiple sclerosis (MS), is a major factor leading to permanent loss of vision. Despite decreased vision (optic neuritis), diplopia, and nystagmus, the immunopathology of the optic nerve in MS is unclear. Here, we have characterized the optic nerve pathology in a large cohort of MS cases (n = 154), focusing on the immune responses in a sub-cohort of MS (n = 30) and control (n = 6) cases.
View Article and Find Full Text PDFMicroglia, the resident myeloid cells in the central nervous system (CNS) play critical roles in shaping the brain during development, responding to invading pathogens, and clearing tissue debris or aberrant protein aggregations during ageing and neurodegeneration. The original concept that like macrophages, microglia are either damaging (pro-inflammatory) or regenerative (anti-inflammatory) has been updated to a kaleidoscope view of microglia phenotypes reflecting their wide-ranging roles in maintaining homeostasis in the CNS and, their contribution to CNS diseases, as well as aiding repair. The use of new technologies including single cell/nucleus RNA sequencing has led to the identification of many novel microglia states, allowing for a better understanding of their complexity and distinguishing regional variations in the CNS.
View Article and Find Full Text PDFClin Exp Immunol
December 2021
To monitor innate immune responses in the CNS, the 18 kDa Translocator protein (TSPO) is a frequently used target for PET imaging. The frequent assumption that increased TSPO expression in the human CNS reflects pro-inflammatory activation of microglia has been extrapolated from rodent studies. However, TSPO expression does not increase in activated human microglia in vitro.
View Article and Find Full Text PDF