Publications by authors named "Manuel Martinez-Escandell"

Clathrate hydrates are crystalline solids characterized by their ability to accommodate large quantities of guest molecules. Although CH and CO are the traditional guests found in natural systems, incorporating smaller molecules (e.g.

View Article and Find Full Text PDF

Although traditionally high-surface area carbon materials have been considered as rigid structures with a disordered three dimensional (3D) network of graphite microdomains associated with a limited electrical conductivity (highly depending on the porous structure and surface chemistry), here we show that this is not the case for activated carbon materials prepared using harsh activation conditions (e.g., KOH activation).

View Article and Find Full Text PDF

KOH activation of a mesophase pitch produces very efficient carbons for the removal of sulfide in aqueous solution, increasing the sulfur oxidation rate with the degree of activation of the carbon. These carbons are characterized by their graphitic structures, with domains of sizes of around 20 nm, and a moderate concentration of surface oxygen groups (0.2-0.

View Article and Find Full Text PDF

The molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano-confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4 /CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions.

View Article and Find Full Text PDF

The presence of a highly tunable porous structure and surface chemistry makes metal-organic framework (MOF) materials excellent candidates for artificial methane hydrate formation under mild temperature and pressure conditions (2 °C and 3-5 MPa). Experimental results using MOFs with a different pore structure and chemical nature (MIL-100 (Fe) and ZIF-8) clearly show that the water-framework interactions play a crucial role in defining the extent and nature of the gas hydrates formed. Whereas the hydrophobic MOF promotes methane hydrate formation with a high yield, the hydrophilic one does not.

View Article and Find Full Text PDF

Natural methane hydrates are believed to be the largest source of hydrocarbons on Earth. These structures are formed in specific locations such as deep-sea sediments and the permafrost based on demanding conditions of high pressure and low temperature. Here we report that, by taking advantage of the confinement effects on nanopore space, synthetic methane hydrates grow under mild conditions (3.

View Article and Find Full Text PDF

For the practical use of activated carbon (AC) as an adsorbent of CH(4) , tightly packed monoliths with high microporosity are supposed to be one of the best morphologies in terms of storage capacity per apparent volume of the adsorbent material. However, monolith-type ACs may cause diffusion obstacles in adsorption processes owing to their necked pore structures among the densely packed particles, which result in a lower adsorption performance than that of the corresponding powder ACs. To clarify the relationship between the pore structure and CH₄ adsorptivity, microscopic observations, structural studies on the nanoscale, and conductivity measurements (thermal and electrical) were performed on recently developed binder-free, self-sinterable ACs in both powder and monolithic forms.

View Article and Find Full Text PDF

Although metal-organic framework (MOF) materials have been postulated as superior to any other sorbent for CO(2) adsorption at room temperature, here we prove that the appropriate selection of the raw material and the synthesis conditions allows the preparation of carbon molecular sieves (CMSs) with adsorption capacity, on a volumetric basis, highly exceeding those reported in the literature for MOFs. Furthermore, the excellent sorption properties of CMSs over the whole pressure range (up to 50 bar) are fully reversible after different adsorption/desorption cycles.

View Article and Find Full Text PDF

Different site energy distribution functions based on the condensation approximation method are proposed for the liquid-phase or gas-phase adsorption equilibrium data following the Fritz-Schlüender isotherm. Energy distribution functions for the four limiting cases of the Fritz-Schlüender isotherm are also discussed. The proposed models are successfully applied to the experimental equilibrium data of nitrogen molecules at 77 K on a pitch-based activated carbon (PA) and a pitch-based activated carbon containing boron (PBA).

View Article and Find Full Text PDF

A series of carbon molecular sieves (CMSs) has been prepared, either as powders or monoliths, from petroleum pitch using potassium hydroxide as the activating agent. The CMS monoliths are prepared without the use of a binder based on the self-sintering ability of the mesophase pitch. Characterization results show that these CMSs combine a large apparent surface area (up to ca.

View Article and Find Full Text PDF