Publications by authors named "Manuel Lucas Sampaio de Oliveira"

The force produced by a muscle depends on its contractile history, yet human movement simulations typically employ muscle models that define the force-length relationship from measurements of fiber force during isometric contractions. In these muscle models, the total force-length curve can have a negative slope at fiber lengths greater than the fiber length at which peak isometric force is produced. This region of negative stiffness can cause numerical instability in simulations.

View Article and Find Full Text PDF

Sophisticated muscle material models are required to perform detailed finite element simulations of soft tissue; however, state-of-the-art muscle models are not among the built-in materials in popular commercial finite element software packages. Implementing user-defined muscle material models is challenging for two reasons: deriving the tangent modulus tensor for a material with a complex strain energy function is tedious and programing the algorithm to compute it is error-prone. These challenges hinder widespread use of such models in software that employs implicit, nonlinear, Newton-type finite element methods.

View Article and Find Full Text PDF