Publications by authors named "Manuel Liebeke"

Fast and reliable identification of bacteria directly in clinical samples is a critical factor in clinical microbiological diagnostics. Current approaches require time-consuming bacterial isolation and enrichment procedures, delaying stratified treatment. Here, we describe a biomarker-based strategy that utilises bacterial small molecular metabolites and lipids for direct detection of bacteria in complex samples using mass spectrometry (MS).

View Article and Find Full Text PDF

Throughout gestation, the female body undergoes a series of transformations, including profound alterations in intestinal microbial communities. Changes gradually increase toward the end of pregnancy and comprise reduced α-diversity of microbial communities and an increased propensity for energy harvest. Despite the importance of the intestinal microbiota for the pathophysiology of inflammatory bowel diseases, very little is known about the relationship between these microbiota shifts and pregnancy-associated complications of the disease.

View Article and Find Full Text PDF
Article Synopsis
  • - Brown macroalgae produce fucoidans, which are sulfated polysaccharides that help with carbon dioxide sequestration and have potential uses in biotech and medicine, but their structural diversity complicates their application.
  • - The study uses MALDI mass spectrometry alongside biocatalysis to demonstrate that enzymes can create defined oligosaccharide structures from raw macroalgal biomass, showcasing a versatile approach applicable across multiple algae species.
  • - The research establishes that this method, utilizing both MALDI-TOF/TOF and AP-MALDI-Orbitrap technologies, allows for efficient extraction and high-throughput evaluation of fucoidan samples, facilitating better understanding and utilization of these compounds.
View Article and Find Full Text PDF

microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.

View Article and Find Full Text PDF

Label-free molecular imaging techniques such as matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) enable the direct and simultaneous mapping of hundreds of different metabolites in thin sections of biological tissues. However, in host-microbe interactions it remains challenging to localize microbes and to assign metabolites to the host versus members of the microbiome. We therefore developed a correlative imaging approach combining MALDI-MSI with fluorescence in situ hybridization (FISH) on the same section to identify and localize microbial cells.

View Article and Find Full Text PDF

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.

View Article and Find Full Text PDF

Neuropeptides are important regulators of animal physiology and behavior. Hitherto the gold standard for the localization of neuropeptides have been immunohistochemical methods that require the synthesis of antibody panels, while another limiting factor has been the brain's opacity for subsequent in situ light or fluorescence microscopy. To address these limitations, we explored the integration of high-resolution mass spectrometry imaging (MSI) with microtomography for a multiplexed mapping of neuropeptides in two evolutionary distant ant species, and .

View Article and Find Full Text PDF

Sterols are vital for nearly all eukaryotes. Their distribution differs in plants and animals, with phytosterols commonly found in plants whereas most animals are dominated by cholesterol. We show that sitosterol, a common sterol of plants, is the most abundant sterol in gutless marine annelids.

View Article and Find Full Text PDF

Brown algae annually convert gigatons of carbon dioxide into carbohydrates, including the complex extracellular matrix polysaccharide fucoidan. Due to its persistence in the environment, fucoidan is potentially a pathway for marine carbon sequestration. Rates of fucoidan secretion by brown algae remain unknown due to the challenge of identifying and quantifying complex polysaccharides in seawater.

View Article and Find Full Text PDF

Eukaryotes may experience oxygen deprivation under both physiological and pathological conditions. Because oxygen shortage leads to a reduction in cellular energy production, all eukaryotes studied so far conserve energy by suppressing their metabolism. However, the molecular physiology of animals that naturally and repeatedly experience anoxia is underexplored.

View Article and Find Full Text PDF

Seagrasses are among the most efficient sinks of carbon dioxide on Earth. While carbon sequestration in terrestrial plants is linked to the microorganisms living in their soils, the interactions of seagrasses with their rhizospheres are poorly understood. Here, we show that the seagrass, Posidonia oceanica excretes sugars, mainly sucrose, into its rhizosphere.

View Article and Find Full Text PDF

Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of in the Mediterranean Sea.

View Article and Find Full Text PDF

Our understanding of metabolic interactions between small symbiotic animals and bacteria or parasitic eukaryotes that reside within their bodies is extremely limited. This gap in knowledge originates from a methodological challenge, namely to connect histological changes in host tissues induced by beneficial and parasitic (micro)organisms to the underlying metabolites. We addressed this challenge and developed chemo-histo-tomography (CHEMHIST), a culture-independent approach to connect anatomic structure and metabolic function in millimeter-sized symbiotic animals.

View Article and Find Full Text PDF

Spatial metabolomics using mass spectrometry imaging (MSI) is a powerful tool to map hundreds to thousands of metabolites in biological systems. One major challenge in MSI is the annotation of / values, which is substantially complicated by background ions introduced throughout the chemicals and equipment used during experimental procedures. Among many factors, the formation of adducts with sodium or potassium ions, or in case of matrix-assisted laser desorption ionization (MALDI)-MSI, the presence of abundant matrix clusters strongly increases total / peak counts.

View Article and Find Full Text PDF

Vacuolar myelinopathy is a fatal neurological disease that was initially discovered during a mysterious mass mortality of bald eagles in Arkansas in the United States. The cause of this wildlife disease has eluded scientists for decades while its occurrence has continued to spread throughout freshwater reservoirs in the southeastern United States. Recent studies have demonstrated that vacuolar myelinopathy is induced by consumption of the epiphytic cyanobacterial species growing on aquatic vegetation, primarily the invasive Here, we describe the identification, biosynthetic gene cluster, and biological activity of aetokthonotoxin, a pentabrominated biindole alkaloid that is produced by the cyanobacterium We identify this cyanobacterial neurotoxin as the causal agent of vacuolar myelinopathy and discuss environmental factors-especially bromide availability-that promote toxin production.

View Article and Find Full Text PDF

Associations between animals and microbes affect not only the immediate tissues where they occur, but also the entire host. Metabolomics, the study of small biomolecules generated during metabolic processes, provides a window into how mutualistic interactions shape host biochemistry. The Hawaiian bobtail squid, , is amenable to metabolomic studies of symbiosis because the host can be reared with or without its species-specific symbiont, In addition, unlike many invertebrates, the host squid has a closed circulatory system.

View Article and Find Full Text PDF

Brown algae are important players in the global carbon cycle by fixing carbon dioxide into 1 Gt of biomass annually, yet the fate of fucoidan-their major cell wall polysaccharide-remains poorly understood. Microbial degradation of fucoidans is slower than that of other polysaccharides, suggesting that fucoidans are more recalcitrant and may sequester carbon in the ocean. This may be due to the complex, branched and highly sulfated structure of fucoidans, which also varies among species of brown algae.

View Article and Find Full Text PDF

Cold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation.

View Article and Find Full Text PDF
Article Synopsis
  • The structure and biological function of carbohydrates are influenced by the connectivity of monosaccharides, which traditional mass spectrometry (MS/MS) methods struggle to reveal due to insufficient cross-ring fragment generation.
  • Helium-charge transfer dissociation (He-CTD) was tested as an alternative to better identify the linking patterns in β-1,4- and β-1,3-linked oligosaccharides, producing distinctive fragment ions that facilitate structural analysis.
  • Although He-CTD improved carbohydrate linkage analysis, issues with isobaric impurities in mixed-linked samples sometimes hindered clear connectivity assignments, suggesting the need for prior separation techniques like UPLC or ion mobility spectrometry for more accurate results.
View Article and Find Full Text PDF

Spatial metabolomics describes the location and chemistry of small molecules involved in metabolic phenotypes, defence molecules and chemical interactions in natural communities. Most current techniques are unable to spatially link the genotype and metabolic phenotype of microorganisms in situ at a scale relevant to microbial interactions. Here, we present a spatial metabolomics pipeline (metaFISH) that combines fluorescence in situ hybridization (FISH) microscopy and high-resolution atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry to image host-microbe symbioses and their metabolic interactions.

View Article and Find Full Text PDF

Microbial communities exchange molecules with their environment, which plays a major role in regulating global biogeochemical cycles and climate. While extracellular metabolites are commonly measured in terrestrial and limnic ecosystems, the presence of salt in marine habitats limits the nontargeted analyses of the ocean exometabolome using mass spectrometry (MS). Current methods require salt removal prior to sample measurements, which can alter the molecular composition of the metabolome and limit the types of compounds detected by MS.

View Article and Find Full Text PDF

Since the discovery of symbioses between sulfur-oxidizing (thiotrophic) bacteria and invertebrates at hydrothermal vents over 40 years ago, it has been assumed that autotrophic fixation of CO by the symbionts drives these nutritional associations. In this study, we investigated " Kentron," the clade of symbionts hosted by , a diverse genus of ciliates which are found in marine coastal sediments around the world. Despite being the main food source for their hosts, Kentron bacteria lack the key canonical genes for any of the known pathways for autotrophic carbon fixation and have a carbon stable isotope fingerprint that is unlike other thiotrophic symbionts from similar habitats.

View Article and Find Full Text PDF

Placozoa is an enigmatic phylum of simple, microscopic, marine metazoans. Although intracellular bacteria have been found in all members of this phylum, almost nothing is known about their identity, location and interactions with their host. We used metagenomic and metatranscriptomic sequencing of single host individuals, plus metaproteomic and imaging analyses, to show that the placozoan Trichoplax sp.

View Article and Find Full Text PDF
Article Synopsis
  • Chemoautotrophic bacteria usually have much higher biomass than their symbionts, but in the case of mouthless flatworms, Riegeria symbionts can make up to half of the total biomass.
  • These symbionts have been passed down through generations for over 500 million years, leading to streamlined genomes while maintaining essential functions for the flatworms.
  • The study of R. santandreae reveals a significantly smaller genome compared to free-living relatives, but it has an efficient metabolism and is capable of storing large amounts of energy, primarily supplying energy to its flatworm host through outer-membrane vesicles.
View Article and Find Full Text PDF