Label-free imaging through two-photon autofluorescence of NAD(P)H allows for nondestructive, high-resolution visualization of cellular activities in living systems. However, its application to thick tissues has been restricted by its limited penetration depth within 300 μm, largely due to light scattering. Here, we demonstrate that the imaging depth for NAD(P)H can be extended to more than 700 μm in living engineered human multicellular microtissues by adopting multimode fiber-based, low repetition rate, high peak power, three-photon excitation of NAD(P)H at 1100 nm.
View Article and Find Full Text PDFMultimode fibers (MMFs) are gaining renewed interest for nonlinear effects due to their high-dimensional spatiotemporal nonlinear dynamics and scalability for high power. High-brightness MMF sources with effective control of the nonlinear processes would offer possibilities in many areas from high-power fiber lasers, to bioimaging and chemical sensing, and to intriguing physics phenomena. Here we present a simple yet effective way of controlling nonlinear effects at high peak power levels.
View Article and Find Full Text PDFPain relief by vibrotactile touch is a common human experience. Previous neurophysiological investigations of its underlying mechanism in animals focused on spinal circuits, while human studies suggested the involvement of supraspinal pathways. Here, we examine the role of primary somatosensory cortex (S1) in touch-induced mechanical and heat analgesia.
View Article and Find Full Text PDFTwo-photon imaging studies in mouse primary visual cortex (V1) consistently report that around half of the neurons respond to oriented grating stimuli. However, in cats and primates, nearly all neurons respond to such stimuli. Here we show that mouse V1 responsiveness and selectivity strongly depends on neuronal depth.
View Article and Find Full Text PDFDirect contact and communication between pericytes and endothelial cells is critical for maintenance of cerebrovascular stability and blood-brain barrier function. Capillary pericytes have thin processes that reach hundreds of micrometers along the capillary bed. The processes of adjacent pericytes come in close proximity but do not overlap, yielding a cellular chain with discrete territories occupied by individual pericytes.
View Article and Find Full Text PDFUnlabelled: Blood-brain barrier disruption (BBB) and release of toxic blood molecules into the brain contributes to neuronal injury during stroke and other cerebrovascular diseases. While pericytes are builders and custodians of the BBB in the normal brain, their impact on BBB integrity during ischemia remains unclear. We imaged pericyte-labeled transgenic mice with in vivo two-photon microscopy to examine the relationship between pericytes and blood plasma leakage during photothrombotic occlusion of cortical capillaries.
View Article and Find Full Text PDFNeural activation increases blood flow locally. This vascular signal is used by functional imaging techniques to infer the location and strength of neural activity. However, the precise spatial scale over which neural and vascular signals are correlated is unknown.
View Article and Find Full Text PDFIn the primary visual cortex (V1), Simple and Complex receptive fields (RFs) are usually characterized on the basis of the linearity of the cell spiking response to stimuli of opposite contrast. Whether or not this classification reflects a functional dichotomy in the synaptic inputs to Simple and Complex cells is still an open issue. Here we combined intracellular membrane potential recordings in cat V1 with 2D dense noise stimulation to decompose the Simple-like and Complex-like components of the subthreshold RF into a parallel set of functionally distinct subunits.
View Article and Find Full Text PDFThe neocortex is organized into macroscopic functional maps. However, at the microscopic scale, the functional preference and degree of feature selectivity between neighboring neurons can vary considerably. In the primary visual cortex, adjacent neurons in iso-orientation domains share the same orientation preference, whereas neighboring neurons near pinwheel centers are tuned to different stimulus orientations.
View Article and Find Full Text PDFSynaptic noise is thought to be a limiting factor for computational efficiency in the brain. In visual cortex (V1), ongoing activity is present in vivo, and spiking responses to simple stimuli are highly unreliable across trials. Stimulus statistics used to plot receptive fields, however, are quite different from those experienced during natural visuomotor exploration.
View Article and Find Full Text PDFThe sensitivity and rate of neural coding along the early visual pathways adapt to changes in contrast of the retinal image caused by external motion or self-generated eye movements. To identify the functional mechanisms of fast and slow contrast adaptation at the level of the visual cortex, we randomly varied, over both short and long timescales, the contrast of optimal sinusoidal gratings flashed in the receptive field of simple cells. We found that fast contrast-dependent suppression lagged excitation by ~11 ms and controlled the spike's temporal precision.
View Article and Find Full Text PDFIn the primary visual cortex of non-rodent mammals, neurons are clustered according to their preference for stimulus features such as orientation(1-4), direction(5-7), ocular dominance(8,9) and binocular disparity(9). Orientation selectivity is the most widely studied feature and a continuous map with a quasi-periodic layout for preferred orientation is present across the entire primary visual cortex(10,11). Integrating the synaptic, cellular and network contributions that lead to stimulus selective responses in these functional maps requires the hybridization of imaging techniques that span sub-micron to millimeter spatial scales.
View Article and Find Full Text PDFUncovering the functional properties of individual synaptic inputs on single neurons is critical for understanding the computational role of synapses and dendrites. Previous studies combined whole-cell patch recording to load neurons with a fluorescent calcium indicator and two-photon imaging to map subcellular changes in fluorescence upon sensory stimulation. By hyperpolarizing the neuron below spike threshold, the patch electrode ensured that changes in fluorescence associated with synaptic events were isolated from those caused by back-propagating action potentials.
View Article and Find Full Text PDFSpike timing-dependent plasticity (STDP) is considered as an ubiquitous rule for associative plasticity in cortical networks in vitro. However, limited supporting evidence for its functional role has been provided in vivo. In particular, there are very few studies demonstrating the co-occurrence of synaptic efficiency changes and alteration of sensory responses in adult cortex during Hebbian or STDP protocols.
View Article and Find Full Text PDFIntracellular recordings of neuronal membrane potential are a central tool in neurophysiology. In many situations, especially in vivo, the traditional limitation of such recordings is the high electrode resistance and capacitance, which may cause significant measurement errors during current injection. We introduce a computer-aided technique, Active Electrode Compensation (AEC), based on a digital model of the electrode interfaced in real time with the electrophysiological setup.
View Article and Find Full Text PDF