Publications by authors named "Manuel Jose Rodriguez"

Background: RTP801/REDD1 is a stress-regulated protein whose upregulation is necessary and sufficient to trigger neuronal death in in vitro and in vivo models of Parkinson's and Huntington's diseases and is up regulated in compromised neurons in human postmortem brains of both neurodegenerative disorders. Indeed, in both Parkinson's and Huntington's disease mouse models, RTP801 knockdown alleviates motor-learning deficits.

Results: We investigated the physiological role of RTP801 in neuronal plasticity and we found RTP801 in rat, mouse and human synapses.

View Article and Find Full Text PDF

The coronavirus disease (COVID-19) pandemic has been devastating in all senses, particularly psychologically. Physical activity (PA) is known to aid psychological well-being, and it is worth investigating whether PA has been a coping strategy during this pandemic. The objective of this literature review is to analyze the extent to which engaging in PA during the COVID-19 pandemic impacts psychological health in the adult population.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurological disorder characterized by motor disturbances. HD pathology is most prominent in the striatum, the central hub of the basal ganglia. The cerebral cortex is the main striatal afferent, and progressive cortico-striatal disconnection characterizes HD.

View Article and Find Full Text PDF

The aim of this work is to study the characteristics of the dromedary nervous lobe and determine how the seasons condition its organization. To this end, electron microscopy was performed and examined quantitatively on animals from winter and summer periods. The results show a higher number of cells in the nervous lobe in summer than in winter.

View Article and Find Full Text PDF

In the search for appropriate models for Alzheimer's disease (AD) involving animals other than rodents, several laboratories are working with animals that naturally develop cognitive dysfunction. Among the animals tested, dogs are quite unique in helping to elucidate the cascade of events that take place in brain amyloid-beta (Aβ)deposition aging, and cognitive deficit. Recent innovative research has validated human methods and tools for the analysis of canine neuropathology and has allowed the development of two different approaches to investigate dogs as natural models of AD.

View Article and Find Full Text PDF

The dog is increasingly considered as a natural animal model for the study of normal and pathological human brain aging, because it exhibits anatomical, biochemical and cognitive changes that parallel those seen in humans. This study presents a novel visual semi-quantitative rating scale of canine cerebral magnetic resonance imaging (MRI). Ninety-eight dogs of both sexes from 27 pure breeds, aged 2-15 years, were used.

View Article and Find Full Text PDF
Article Synopsis
  • Human cerebral calcification is linked to problems with calcium balance inside cells, impacting neurodegenerative processes.
  • In experiments with rats, AMPA caused lesions and calcification in the hippocampus, showing that calcium antagonists like nimodipine and TMB-8 have differing effects on these damages.
  • Nimodipine can reverse the calcification caused by TMB-8, highlighting distinct calcium movement mechanisms in different brain regions, suggesting that further research is needed to explore calcium's role in neurodegenerative diseases.
View Article and Find Full Text PDF

The specific functional and pathological alterations observed in Alzheimer's disease are less severe in the cerebellum than in other brain areas, particularly the entorhinal cortex and hippocampus. Since dense core amyloid-beta plaque formation has been associated with an acetylcholinesterase heterogeneous nucleator action, we examined if an acetylcholinesterase imbalance was involved in cerebellum plaque deposition. By using the canine counterpart of senile dementia of the Alzheimer's type, a promising model of human brain aging and early phases of Alzheimer's disease, we investigated how cerebellar pathology and acetylcholinesterase density could be related with cognitive dysfunction.

View Article and Find Full Text PDF