Proc Natl Acad Sci U S A
April 2022
The complex processes and interactions that regulate aging and determine lifespan are not fully defined for any organism. Here, taking advantage of recent technological advances in studying aging in budding yeast, we discovered a previously unappreciated relationship between the number of copies of the ribosomal RNA gene present in its chromosomal array and replicative lifespan (RLS). Specifically, the chromosomal ribosomal DNA (rDNA) copy number (rDNA CN) positively correlated with RLS and this interaction explained over 70% of variability in RLS among a series of wild-type strains.
View Article and Find Full Text PDFThe ability to switch a gene from off to on and monitor dynamic changes provides a powerful approach for probing gene function and elucidating causal regulatory relationships. Here, we developed and characterized YETI (Yeast Estradiol strains with Titratable Induction), a collection in which > 5,600 yeast genes are engineered for transcriptional inducibility with single-gene precision at their native loci and without plasmids. Each strain contains SGA screening markers and a unique barcode, enabling high-throughput genetics.
View Article and Find Full Text PDFChemotaxis is a specialized form of directed cell migration important for normal development, wound healing, and cancer metastasis. In the social amoeba Dictyostelium discoideum, four signaling pathways act synergistically to maintain directional cell migration. However, it is unknown how these pathways are coordinated in space and time to achieve persistent chemotaxis.
View Article and Find Full Text PDFMany asymmetrically dividing cells unequally partition cellular structures according to age. Yet, it is unclear how cells differentiate pre-existing from newly synthesized material. Yeast cells segregate the spindle pole body (SPB, centrosome equivalent) inherited from the previous mitosis to the bud, while keeping the new one in the mother cell.
View Article and Find Full Text PDFThe asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e.
View Article and Find Full Text PDFIn budding yeast, the Mitotic Exit Network (MEN) is a signaling pathway known to drive cells out of mitosis and promote the faithful division of cells. The MEN triggers inactivation of cyclin-dependent kinase (Cdk1), the master regulator of mitosis, and the onset of cytokinesis after segregation of the daughter nuclei. The current model of the MEN suggests that MEN activity is restricted to late anaphase and coordinated with proper alignment of the spindle pole bodies (SPBs) with the division axis.
View Article and Find Full Text PDFMany asymmetrically dividing cells segregate the poles of the mitotic spindle non-randomly between their two daughters. In budding yeast, the protein Kar9 localizes almost exclusively to the astral microtubules emanating from the old spindle pole body (SPB) and promotes its movement toward the bud. Thereby, Kar9 orients the spindle relative to the division axis.
View Article and Find Full Text PDFLike many asymmetrically dividing cells, budding yeast segregates mitotic spindle poles nonrandomly between mother and daughter cells. During metaphase, the spindle positioning protein Kar9 accumulates asymmetrically, localizing specifically to astral microtubules emanating from the old spindle pole body (SPB) and driving its segregation to the bud. Here, we show that the SPB component Nud1/centriolin acts through the mitotic exit network (MEN) to specify asymmetric SPB inheritance.
View Article and Find Full Text PDFA recent analysis of spindle positioning in yeast sheds light on how interactions between microtubules and the cleavage apparatus are modulated through mitosis to promote and maintain proper positioning of the spindle and cleavage plane relative to each other.
View Article and Find Full Text PDF