Publications by authors named "Manuel Grana"

The declaration of the COVID-19 pandemic by the World Health Organization (WHO) in March 2020 has triggered the publication of thousands of papers covering a plethora of aspects of the pandemic, from epidemiology models [...

View Article and Find Full Text PDF

Haptic technologies are increasingly valuable for human-computer interaction in its many flavors, including, of course, virtual reality systems, which are becoming very useful tools for education, training, and rehabilitation in many areas of medicine, engineering, and daily life. There is a broad spectrum of technologies and approaches that provide haptic stimuli, ranging from the well-known force feedback to subtile pseudo-haptics and visual haptics. Correspondingly, there is a broad spectrum of applications and system designs that include haptic technologies as a relevant component and interaction feature.

View Article and Find Full Text PDF

Falls are a major health hazard for older adults; therefore, in the context of an aging population, predicting the risk of a patient suffering falls in the near future is of great impact for health care systems. Currently, the standard prospective fall risk assessment instrument relies on a set of clinical and functional mobility assessment tools, one of them being the Timed Up and Go (TUG) test. Recently, wearable inertial measurement units (IMUs) have been proposed to capture motion data that would allow for the building of estimates of fall risk.

View Article and Find Full Text PDF

Background: Disease trajectories have become increasingly relevant within the context of an aging population and the rising prevalence of chronic illnesses. Understanding the temporal progression of diseases is crucial for enhancing patient care, preventive measures, and effective management.

Objective: The objective of this study is to propose and validate a novel methodology for trajectory impact analysis and interactive visualization of disease trajectories over a cohort of 71,849 patients.

View Article and Find Full Text PDF

The impact of micro-level people's activities on urban macro-level indicators is a complex question that has been the subject of much interest among researchers and policymakers. Transportation preferences, consumption habits, communication patterns and other individual-level activities can significantly impact large-scale urban characteristics, such as the potential for innovation generation of the city. Conversely, large-scale urban characteristics can also constrain and determine the activities of their inhabitants.

View Article and Find Full Text PDF

Background: Frailty is characterized by a progressive decline in the physiological functions of multiple body systems that lead to a more vulnerable condition, which is prone to the development of various adverse events, such as falls, hospitalization, and mortality. This study aims to determine whether frailty increases mortality compared to pre-frailty and to identify variables associated with a higher risk of mortality.

Materials: Two cohorts, frail and pre-frail subjects, are evaluated according to the Fried phenotype.

View Article and Find Full Text PDF

Cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Heart failure (HF) occurs when the heart is not able to pump enough blood to satisfy metabolic needs.

View Article and Find Full Text PDF

Understanding at microscopic level the generation of contents in an online social network (OSN) is highly desirable for an improved management of the OSN and the prevention of undesirable phenomena, such as online harassment. Content generation, i.e.

View Article and Find Full Text PDF

In recent years, speech emotion recognition (SER) has emerged as one of the most active human-machine interaction research areas. Innovative electronic devices, services and applications are increasingly aiming to check the user emotional state either to issue alerts under some predefined conditions or to adapt the system responses to the user emotions. Voice expression is a very rich and noninvasive source of information for emotion assessment.

View Article and Find Full Text PDF

This study aims to determine when frailty increases the risks of delirium mortality. Hospital patients falling into the elderly frail or pre-frail category were recruited, some without delirium, some with delirium at admission, and some who developed delirium during admission. We screened for frailty, cognitive status, and co-morbidities whenever possible and extracted drug information and mortality data from electronic health records.

View Article and Find Full Text PDF

This paper presents an automatic system for the quality control of metallic components using a photometric stereo-based sensor and a customized semantic segmentation network. This system is designed based on interoperable modules, and allows capturing the knowledge of the operators to apply it later in automatic defect detection. A salient contribution is the compact representation of the surface information achieved by combining photometric stereo images into a RGB image that is fed to a convolutional segmentation network trained for surface defect detection.

View Article and Find Full Text PDF

Introduction: Despite multiple prognostic indicators described for oral cavity squamous cell carcinoma (OCSCC), its management still continues to be a matter of debate. Machine learning is a subset of artificial intelligence that enables computers to learn from historical data, gather insights, and make predictions about new data using the model learned. Therefore, it can be a potential tool in the field of head and neck cancer.

View Article and Find Full Text PDF

The global population is aging in an unprecedented manner and the challenges for improving the lives of older adults are currently both a strong priority in the political and healthcare arena. In this sense, preventive measures and telemedicine have the potential to play an important role in improving the number of healthy years older adults may experience and virtual coaching is a promising research area to support this process. This paper presents COLAEVA, an interactive web application for older adult population clustering and evolution analysis.

View Article and Find Full Text PDF

Surface flatness assessment is necessary for quality control of metal sheets manufactured from steel coils by roll leveling and cutting. Mechanical-contact-based flatness sensors are being replaced by modern laser-based optical sensors that deliver accurate and dense reconstruction of metal sheet surfaces for flatness index computation. However, the surface range images captured by these optical sensors are corrupted by very specific kinds of noise due to vibrations caused by mechanical processes like degreasing, cleaning, polishing, shearing, and transporting roll systems.

View Article and Find Full Text PDF

Behavioral phenotyping devices have been successfully used to build ethograms, but many aspects of behavior remain out of reach of available phenotyping systems. We now report on a novel device, which consists in an open-field platform resting on highly sensitive piezoelectric (electromechanical) pressure-sensors, with which we could detect the slightest movements (up to individual heart beats during rest) from freely moving rats and mice. The combination with video recordings and signal analysis based on time-frequency decomposition, clustering, and machine learning algorithms provided non-invasive access to previously overlooked behavioral components.

View Article and Find Full Text PDF

In this paper, we propose and validate with data extracted from the city of Santiago, capital of Chile, a methodology to assess the actual impact of lockdown measures based on the anonymized and geolocated data from credit card transactions. Using unsupervised Latent Dirichlet Allocation (LDA) semantic topic discovery, we identify temporal patterns in the use of credit cards that allow us to quantitatively assess the changes in the behavior of the people under the lockdown measures because of the COVID-19 pandemic. An unsupervised latent topic analysis uncovers the main patterns of credit card transaction activity that explain the behavior of the inhabitants of Santiago City.

View Article and Find Full Text PDF

The wide availability of satellite data from many distributors in different domains of science has provided the opportunity for the development of new and improved methodologies to aid the analysis of environmental problems and to support more reliable estimations and forecasts. Moreover, the rapid development of specialized technologies in satellite instruments provides the opportunity to obtain a wide spectrum of various measurements. The purpose of this research is to use publicly available remote sensing product data computed from geostationary, polar and near-polar satellites and radar to improve space-time modeling and prediction of precipitation on Crete island in Greece.

View Article and Find Full Text PDF

Background: Despite the increasing use of intraoperative facial nerve monitoring during parotid gland surgery (PGS) and the improvement in the preoperative radiological assessment, facial nerve injury (FNI) remains the most severe complication after PGS. Until now, no studies have been published regarding the application of machine learning (ML) for predicting FNI after PGS. We hypothesize that ML would improve the prediction of patients at risk.

View Article and Find Full Text PDF

Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest.

View Article and Find Full Text PDF

Background: Medical knowledge is accumulated in scientific research papers along time. In order to exploit this knowledge by automated systems, there is a growing interest in developing text mining methodologies to extract, structure, and analyze in the shortest time possible the knowledge encoded in the large volume of medical literature. In this paper, we use the Latent Dirichlet Allocation approach to analyze the correlation between funding efforts and actually published research results in order to provide the policy makers with a systematic and rigorous tool to assess the efficiency of funding programs in the medical area.

View Article and Find Full Text PDF

Flatness sensors are required for quality control of metal sheets obtained from steel coils by roller leveling and cutting systems. This article presents an innovative system for real-time robust surface estimation of flattened metal sheets composed of two line lasers and a conventional 2D camera. Laser plane triangulation is used for surface height retrieval along virtual surface fibers.

View Article and Find Full Text PDF

Human activity recognition and neural activity analysis are the basis for human computational neureoethology research dealing with the simultaneous analysis of behavioral ethogram descriptions and neural activity measurements. Wireless electroencephalography (EEG) and wireless inertial measurement units (IMU) allow the realization of experimental data recording with improved ecological validity where the subjects can be carrying out natural activities while data recording is minimally invasive. Specifically, we aim to show that EEG and IMU data fusion allows improved human activity recognition in a natural setting.

View Article and Find Full Text PDF

Noninvasive behavior observation techniques allow more natural human behavior assessment experiments with higher ecological validity. We propose the use of gaze ethograms in the context of user interaction with a computer display to characterize the user's behavioral activity. A gaze ethogram is a time sequence of the screen regions the user is looking at.

View Article and Find Full Text PDF