Non-Contact Atomic Force Microscopy with CO-functionalized metal tips (referred to as HR-AFM) provides access to the internal structure of individual molecules adsorbed on a surface with totally unprecedented resolution. Previous works have shown that deep learning (DL) models can retrieve the chemical and structural information encoded in a 3D stack of constant-height HR-AFM images, leading to molecular identification. In this work, we overcome their limitations by using a well-established description of the molecular structure in terms of topological fingerprints, the 1024-bit Extended Connectivity Chemical Fingerprints of radius 2 (ECFP4), that were developed for substructure and similarity searching.
View Article and Find Full Text PDF