Publications by authors named "Manuel Gnida"

High-resolution NMR spectroscopy enabled us to characterize allosteric transitions between various functional states of the dimeric Lac repressor. In the absence of ligands, the dimer exists in a dynamic equilibrium between DNA-bound and inducer-bound conformations. Binding of either effector shifts this equilibrium toward either bound state.

View Article and Find Full Text PDF

Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO+H2O→CO2+2e(-)+2H(+)) which proceeds at a unique [CuSMo(O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH).

View Article and Find Full Text PDF

The structures of two types of guanidine-quinoline copper complexes have been investigated by single-crystal X-ray crystallography, K-edge X-ray absorption spectroscopy (XAS), resonance Raman and UV/Vis spectroscopy, cyclic voltammetry, and density functional theory (DFT). Independent of the oxidation state, the two structures, which are virtually identical for solids and complexes in solution, resemble each other strongly and are connected by a reversible electron transfer at 0.33 V.

View Article and Find Full Text PDF

In non-specific lac headpiece-DNA complexes selective NMR line broadening is observed that strongly depends on length and composition of the DNA fragments. This broadening involves amide protons found in the non-specific lac-DNA structure to be interacting with the DNA phosphate backbone, and can be ascribed to DNA sliding of the protein along the DNA. This NMR exchange broadening has been used to estimate the 1D diffusion constant for sliding along non-specific DNA.

View Article and Find Full Text PDF

CO dehydrogenase from the Gram-negative chemolithoautotrophic eubacterium Oligotropha carboxidovorans OM5 is a structurally characterized molybdenum-containing iron-sulfur flavoenzyme, which catalyzes the oxidation of CO (CO + H(2)O --> CO(2) + 2e(-) + 2H(+)). It accommodates in its active site a unique bimetallic [CuSMoO(2)] cluster, which is subject to post-translational maturation. Insertional mutagenesis of coxD has established its requirement for the assembly of the [CuSMoO(2)] cluster.

View Article and Find Full Text PDF

The chemical nature of the sulfur in bacterial sulfur globules has been the subject of controversy for a number of years. Sulfur K-edge X-ray absorption spectroscopy (XAS) is a powerful technique for probing the chemical forms of sulfur in situ, but two groups have used it with very different conclusions. The root of the controversy lies with the different detection strategies used by the two groups, which result in very different spectra.

View Article and Find Full Text PDF

Sulfur is essential for life, with important roles in biological structure and function. However, because of a lack of suitable biophysical techniques, in situ information about sulfur biochemistry is generally difficult to obtain. Here, we present an in situ sulfur X-ray absorption spectroscopy (S-XAS) study of living cell cultures of the mammalian renal epithelial MDCK cell line.

View Article and Find Full Text PDF

Azotobacter vinelandii is a diazotrophic bacterium characterized by the outstanding capability of storing Mo in a special storage protein, which guarantees Mo-dependent nitrogen fixation even under growth conditions of extreme Mo starvation. The Mo storage protein is constitutively synthesized with respect to the nitrogen source and is regulated by molybdenum at an extremely low concentration level (0-50 nM). This protein was isolated as an alpha4beta4 octamer with a total molecular mass of about 240 kg mol(-1) and its shape was determined by small-angle X-ray scattering.

View Article and Find Full Text PDF

The structurally characterized molybdoenzyme carbon monoxide dehydrogenase (CODH) catalyzes the oxidation of CO to CO2 in the aerobic bacterium Oligotropha carboxidovorans. The active site of the enzyme was studied by Mo- and Cu-K-edge X-ray absorption spectroscopy. This revealed a bimetallic [Cu(I)SMo(VI)(double bond O)2] cluster in oxidized CODH which was converted into a [Cu(I)SMo(IV)(double bond O)OH2] cluster upon reduction.

View Article and Find Full Text PDF