Wastewater treatment plants (WWTPs) are the final stage of the anthropogenic water cycle where a wide range of chemical and biological markers of human activity can be found. In COVID-19 disease contexts, wastewater surveillance has been used to infer community trends based on viral abundance and SARS-CoV-2 RNA variant composition, which has served to anticipate and establish appropriate protocols to prevent potential viral outbreaks. Numerous studies worldwide have provided reliable and robust tools to detect and quantify SARS-CoV-2 RNA in wastewater, although due to the high dilution and degradation rate of the viral RNA in such samples, the detection limit of the pathogen has been a bottleneck for the proposed protocols so far.
View Article and Find Full Text PDFThe inactivation processes of coliform bacteria (total and fecal) and sulphito-reducing Clostridium bacteria (vegetative species and spores) in water maturation lagoon of a low-cost nature-based wastewater treatment plant using constructed wetlands and through processes of photolysis in a pilot photoreactor have been comparatively studied. The different inactivation mechanisms by photolysis of these bacteria have been studied following the criteria of different statistical and kinetic models. Clostridium disinfection treatments fit models in which two types of bacteria populations coexist, one sensitive (vegetative species) and the other (spores) resistant to the treatment, the sensitive one (94%) with an inactivation rate of k = 0.
View Article and Find Full Text PDF