A novel approach is presented for computing optode placements that are adapted to specific geometries and tissue characteristics, e.g., in optical tomography and photodynamic cancer therapy.
View Article and Find Full Text PDFImage reconstruction in fluorescence optical tomography is a three-dimensional nonlinear ill-posed problem governed by a system of partial differential equations. In this paper we demonstrate that a combination of state of the art numerical algorithms and a careful hardware optimized implementation allows to solve this large-scale inverse problem in a few seconds on standard desktop PCs with modern graphics hardware. In particular, we present methods to solve not only the forward but also the non-linear inverse problem by massively parallel programming on graphics processors.
View Article and Find Full Text PDFFluorescence tomography is an imaging modality that seeks to reconstruct the distribution of fluorescent dyes inside a highly scattering sample from light measurements on the boundary. Using common inversion methods with L(2) penalties typically leads to smooth reconstructions, which degrades the obtainable resolution. The use of total variation (TV) regularization for the inverse model is investigated.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
November 2010
Fluorescence optical tomography is a non-invasive imaging modality that employs the absorption and re-emission of light by fluorescent dyes. The aim is to reconstruct the fluorophore distribution in a body from measurements of light intensities at the boundary. Due to the diffusive nature of light propagation in tissue, fluorescence tomography is a nonlinear and severely ill-posed problem, and some sort of regularization is required for a stable solution.
View Article and Find Full Text PDFFluorescence tomography excites a fluorophore inside a sample by light sources on the surface. From boundary measurements of the fluorescent light, the distribution of the fluorophore is reconstructed. The optode placement determines the quality of the reconstructions in terms of, e.
View Article and Find Full Text PDF