IEEE Trans Med Imaging
February 2012
Retinal blood vessel assessment plays an important role in the diagnosis of ophthalmic pathologies. The use of digital images for this purpose enables the application of a computerized approach and has fostered the development of multiple methods for automated vascular tree segmentation. Metrics based on contingency tables for binary classification have been widely used for evaluating the performance of these algorithms.
View Article and Find Full Text PDFThis paper presents a new supervised method for blood vessel detection in digital retinal images. This method uses a neural network (NN) scheme for pixel classification and computes a 7-D vector composed of gray-level and moment invariants-based features for pixel representation. The method was evaluated on the publicly available DRIVE and STARE databases, widely used for this purpose, since they contain retinal images where the vascular structure has been precisely marked by experts.
View Article and Find Full Text PDFOptic disc (OD) detection is an important step in developing systems for automated diagnosis of various serious ophthalmic pathologies. This paper presents a new template-based methodology for segmenting the OD from digital retinal images. This methodology uses morphological and edge detection techniques followed by the Circular Hough Transform to obtain a circular OD boundary approximation.
View Article and Find Full Text PDF