At the beginning of mammalian life, the genetic material from each parent meets when the fertilized egg divides. It was previously thought that a single microtubule spindle is responsible for spatially combining the two genomes and then segregating them to create the two-cell embryo. We used light-sheet microscopy to show that two bipolar spindles form in the zygote and then independently congress the maternal and paternal genomes.
View Article and Find Full Text PDFSystematic studies of cell divisions at the beginning of mammalian life are of fundamental importance for our understanding of embryonic development and fertility. However, in the past the challenges of in vitro embryo culture and the embryo's pronounced light sensitivity have precluded a detailed investigation of preimplantation cell divisions. This protocol is based on recent technological breakthroughs in inverted light microscopy tailored for mouse embryology.
View Article and Find Full Text PDFIn mammalian females, germ cells remain arrested as primordial follicles. Resumption of meiosis is heralded by germinal vesicle breakdown, condensation of chromosomes, and their eventual alignment on metaphase plates. At the first meiotic division, anaphase-promoting complex/cyclosome associated with Cdc20 (APC/C) activates separase and thereby destroys cohesion along chromosome arms.
View Article and Find Full Text PDFAntigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation.
View Article and Find Full Text PDFCdc6 encodes a key protein for DNA replication, responsible for the recruitment of the MCM helicase to replication origins during the G1 phase of the cell division cycle. The oncogenic potential of deregulated Cdc6 expression has been inferred from cellular studies, but no mouse models have been described to study its effects in mammalian tissues. Here we report the generation of K5-Cdc6, a transgenic mouse strain in which Cdc6 expression is deregulated in tissues with stratified epithelia.
View Article and Find Full Text PDFFaithful chromosome segregation, during meiosis, is of critical importance to prevent aneuploidy in the resulting embryo. In mammalian oocytes, the segregation of homologous chromosomes takes place with the spindle located at the cell's periphery. The spindle is often assembled close to the centre of the cell, which necessitates the actin network for spindle transport to the cell cortex.
View Article and Find Full Text PDFCdk4 and Cdk6 are related protein kinases that bind d-type cyclins and regulate cell-cycle progression. Cdk4/6 inhibitors are currently being used in advanced clinical trials and show great promise against many types of tumors. Cdk4 and Cdk6 are inhibited by INK4 proteins, which exert tumor-suppressing functions.
View Article and Find Full Text PDFThe Anaphase-promoting complex/cyclosome (APC/C) cofactor Cdh1 modulates cell proliferation by targeting multiple cell-cycle regulators for ubiquitin-dependent degradation. Lack of Cdh1 results in structural and numerical chromosome aberrations, a hallmark of genomic instability. By using a proteomic approach in Cdh1-null cells and mouse tissues, we have identified kinesin Eg5 and topoisomerase 2α as Cdh1 targets involved in the maintenance of genomic stability.
View Article and Find Full Text PDFThe E3-ubiquitin ligase APC/C-Cdh1 is essential for endoreduplication but its relevance in the mammalian mitotic cell cycle is still unclear. Here we show that genetic ablation of Cdh1 in the developing nervous system results in hypoplastic brain and hydrocephalus. These defects correlate with enhanced levels of Cdh1 substrates and increased entry into the S phase in neural progenitors.
View Article and Find Full Text PDFThe APC/Cdh1 E3 ubiquitin ligase plays an essential role in both mitotic exit and G1/S transition by targeting key cell-cycle regulators for destruction. There is mounting evidence indicating that Cdh1 has other functions in addition to cell-cycle regulation. However, it remains unclear whether these additional functions depend on its E3 ligase activity.
View Article and Find Full Text PDFThe Anaphase-Promoting Complex or Cyclosome (APC/C) is an E3 ubiquitin ligase whose activation requires the binding of a cofactor, either Cdc20 or Cdh1. While APC/C-Cdc20 is a major player during mitotic exit, APC/C-Cdh1 plays a central role in maintaining quiescence and controlling the onset of DNA replication. In addition, APC/C-Cdh1 is essential for endoreduplication, a process in which several rounds of DNA synthesis occur without mitosis.
View Article and Find Full Text PDFTargeting mitotic exit has been recently proposed as a relevant therapeutic approach against cancer. By using genetically engineered mice, we show that the APC/C cofactor Cdc20 is essential for anaphase onset in vivo in embryonic or adult cells, including progenitor/stem cells. Ablation of Cdc20 results in efficient regression of aggressive tumors, whereas current mitotic drugs display limited effects.
View Article and Find Full Text PDFThe APC/C (anaphase-promoting complex/cyclosome) is an E3 ubiquitin ligase that targets specific substrates for degradation by the 26S proteasome. APC/C activity depends on two cofactors, namely Cdc20 (cell division cycle 20) and Cdh1, which select the appropriate targets for ubiquitination. It is well established that APC/C is a target of the SAC (spindle assembly checkpoint) during mitosis and has critical roles in controlling the protein levels of major regulators of mitosis and DNA replication.
View Article and Find Full Text PDF