J Opt Soc Am A Opt Image Sci Vis
January 2017
We have formulated an asymptotic model for implementation in the finite-element method to calculate diffraction from a planar multilayered structure having a shallow surface-relief grating. The thin grating layer containing the shallow grating is replaced by a planar interface with transmission conditions that differ from the standard continuity conditions, thereby eliminating the necessity of representing the grating layer by a fine mesh. The parameters defining the shallow surface-relief grating are thereby removed from the geometry to the transmission conditions.
View Article and Find Full Text PDFThe rigorous coupled-wave approach (RCWA) is extensively used to compute optical absorption and photon absorption in thin-film photovoltaic solar cells backed by 1D metallic gratings when the wave vector of the incident light lies wholly in the grating plane. The RCWA algorithm converges rapidly for incident s-polarized light over the entire 400-1100 nm solar spectrum. It also performs well for incident p-polarized light in the 400-650 nm spectral regime, but even with a large number of Floquet harmonics in the solution, the total reflectance is underestimated in the 650-1100 nm spectral regime.
View Article and Find Full Text PDFOptimal design of photovoltaic devices with a periodically corrugated metallic backreflector requires a rapid and reliable way to simulate the optical characteristics for wide ranges of wavelengths and angles of incidence. Two independent numerical techniques are needed for confidence in numerical results. We compared the rigorous coupled-wave approach (RCWA) and the finite element method (FEM), the former being fast and flexible, but the latter having predictable convergence even for discontinuous constitutive properties.
View Article and Find Full Text PDF