Publications by authors named "Manuel Cruz-Ramirez"

In 2014, we reported a model for donor-recipient (D-R) matching in liver transplantation (LT) based on artificial neural networks (ANNs) from a Spanish multicenter study (Model for Allocation of Donor and Recipient in España [MADR-E]). The aim is to test the ANN-based methodology in a different European health care system in order to validate it. An ANN model was designed using a cohort of patients from King's College Hospital (KCH; n = 822).

View Article and Find Full Text PDF

Background & Aims: There is an increasing discrepancy between the number of potential liver graft recipients and the number of organs available. Organ allocation should follow the concept of benefit of survival, avoiding human-innate subjectivity. The aim of this study is to use artificial-neural-networks (ANNs) for donor-recipient (D-R) matching in liver transplantation (LT) and to compare its accuracy with validated scores (MELD, D-MELD, DRI, P-SOFT, SOFT, and BAR) of graft survival.

View Article and Find Full Text PDF

Objective: The optimal allocation of organs in liver transplantation is a problem that can be resolved using machine-learning techniques. Classical methods of allocation included the assignment of an organ to the first patient on the waiting list without taking into account the characteristics of the donor and/or recipient. In this study, characteristics of the donor, recipient and transplant organ were used to determine graft survival.

View Article and Find Full Text PDF