We study the flow of grains under vibration passing through a small aperture in two dimensions using discrete element method simulations. Such systems are prone to clogging and strategies to ease the flow are desirable in multiple applications. We show that the addition of low-friction particles to the system can reduce clogging and lead to an enhancement of the net flux of the original species.
View Article and Find Full Text PDFIn quasi-two-dimensional experiments with photoelastic particles confined to an annular region, an intruder constrained to move in a circular path halfway between the annular walls experiences stick-slip dynamics. We discuss the response of the granular medium to the driven intruder, focusing on the evolution of the force network during sticking periods. Because the available experimental data do not include precise information about individual contact forces, we use an approach developed in our previous work [Basak et al.
View Article and Find Full Text PDFFatty acid binding proteins (FABPs) are responsible for the long-chain fatty acids (FAs) transport inside the cell. However, despite the years, since their structure is known and the many studies published, there is no definitive answer about the stages of the lipid entry-exit mechanism. Their structure forms a -barrel of 10 anti-parallel strands with a cap in a helix-turn-helix motif, and there is some consensus on the role of the so-called portal region, involving the second -helix from the cap ( 2), C- D, and E- F turns in FAs exchange.
View Article and Find Full Text PDFThe molecular structure of membrane lipids is formed by mono- or polyunsaturations on their aliphatic tails that make them susceptible to oxidation, facilitating the incorporation of hydroperoxide (R-OOH) functional groups. Such groups promote changes in both composition and complexity of the membrane significantly modifying its physicochemical properties. Human Langerhans islets amyloid polypeptide (hIAPP) is the main component of amyloid deposits found in the pancreas of patients with type-2 diabetes (T2D).
View Article and Find Full Text PDFExperiments and simulations of an intruder dragged by a spring through a two-dimensional annulus of granular material exhibit robust force fluctuations. At low packing fractions (ϕ<ϕ_{0}), the intruder clears an open channel. Above ϕ_{0}, stick-slip dynamics develop, with an average energy release that is independent of the particle-particle and particle-base friction coefficients but does depend on the width W of the annulus and the diameter D of the intruder.
View Article and Find Full Text PDFWe analyze the flow and clogging of circular grains passing through a small aperture under vibration in two dimensions. Via discrete element method simulations, we show that when grains smaller than the original ones are introduced in the system as an additive, the net flow of the original species can be significantly increased. Moreover, there is an optimal radius of the additive particles that maximizes the effect.
View Article and Find Full Text PDFCrystallographic data comes from a space-time average over all the unit cells within the crystal, so dynamic phenomena do not contribute significantly to the diffraction data. Many efforts have been made to reconstitute the movement of the macromolecules and explore the microstates that the confined proteins can adopt in the crystalline network. We explored different strategies to simulate a heart fatty acid binding protein (H-FABP) crystal by means of Molecular Dynamics (MD) simulations.
View Article and Find Full Text PDFWe present simulation results for an intruder pulled through a two-dimensional granular system by a spring using a model designed to mimic the experiments described by Kozlowski et al. [Phys. Rev.
View Article and Find Full Text PDFWe report on a series of experiments in which a grain-sized intruder is pushed by a spring through a two-dimensional granular material composed of photoelastic disks in a Couette geometry. We study the intruder dynamics as a function of packing fraction for two types of supporting substrates: A frictional glass plate and a layer of water for which basal friction forces are negligible. We observe two dynamical regimes: Intermittent flow, in which the intruder moves freely most of the time but occasionally gets stuck, and stick-slip dynamics, in which the intruder advances via a sequence of distinct, rapid events.
View Article and Find Full Text PDFThe objective of this work is to quantify the relation between the value of the effective thermal conductivity of trabecular bone and its microstructure and marrow content. The thermal conductivity of twenty bovine trabecular bone samples was measured prior to and after defatting at 37, 47, and 57 °C. Computer models were built including the microstructure geometry and the gap between the tissue and measurement probe.
View Article and Find Full Text PDFA quaternionic representation of the genetic code, previously reported by the authors (BioSystems 141 (10-19), 2016), is updated in order to incorporate chirality of nucleotide bases and amino acids. The original representation associates with each nucleotide base a prime integer quaternion of norm 7 and involves a function that assigns to each codon, represented by three of these quaternions, another integer quaternion (amino acid type quaternion). The assignation is such that the essentials of the standard genetic code (particularly its degeneration) are preserved.
View Article and Find Full Text PDFThe force network of a granular assembly, defined by the contact network and the corresponding contact forces, carries valuable information about the state of the packing. Simple analysis of these networks based on the distribution of force strengths is rather insensitive to the changes in preparation protocols or to the types of particles. In this and the companion paper [Kondic et al.
View Article and Find Full Text PDFA heuristic diagram of the evolution of the standard genetic code is presented. It incorporates, in a way that resembles the energy levels of an atom, the physical notion of broken symmetry and it is consistent with original ideas by Crick on the origin and evolution of the code as well as with the chronological order of appearance of the amino acids along the evolution as inferred from work that mixtures known experimental results with theoretical speculations. Suggested by the diagram we propose a Hamilton quaternions based mathematical representation of the code as it stands now-a-days.
View Article and Find Full Text PDFThe pair distribution function of the electron gas is calculated using a parameterized generalization of hypernetted chain approximation with the parameters being obtained by optimizing the system energy with a genetic algorithm. The functions so obtained are compared with Monte Carlo simulations performed by other authors in its variational and di_usion versions showing a very good agreement especially with the di_usion Monte Carlo results.
View Article and Find Full Text PDF