Publications by authors named "Manuel Burgos"

This study aimed to explore the variability in nasal airflow patterns among different sexes and populations using computational fluid dynamics (CFD). We focused on evaluating the universality and applicability of dimensionless parameters R (bilateral nasal resistance) and ϕ (nasal flow asymmetry), initially established in a Caucasian Spanish cohort, across a broader spectrum of human populations to assess normal breathing function in healthy airways. In this retrospective study, CT scans from Cambodia (20 males, 20 females), Russia (20 males, 18 females), and Spain (19 males, 19 females) were analyzed.

View Article and Find Full Text PDF

Objectives: Ecogeographic variation in human nasal anatomy has historically been analyzed on skeletal morphology and interpreted in the context of climatic adaptations to respiratory air-conditioning. Only a few studies have analyzed nasal soft tissue morphology, actively involved in air-conditioning physiology.

Materials And Methods: We used in vivo computer tomographic scans of (N = 146) adult individuals from Cambodia, Chile, Russia, and Spain.

View Article and Find Full Text PDF

Flowgy is a semi-automated tool designed to simulate airflow across the nasal passage and detect airflow alterations in humans. In this study, we tested the use and accuracy of Flowgy in non-human vertebrates, using large felids as the study group. Understanding the dynamics of nasal airflow in large felids such as lions () is crucial for their health and conservation.

View Article and Find Full Text PDF

This paper presents an updated view on the morphological and functional significance of the human respiratory system in the context of human evolutionary anatomy. While usually the respiratory system is treated either from a craniofacial perspective, mostly in the context of nasal evolution and air-conditioning, or from a postcranial perspective featuring on overall thoracic shape changes, here we pursue a holistic perspective on the form, function, integration, and evolutionary change of the entire organismal system in hominins. We first present a brief review of the most important morphological structures, their function, and its potential integration and interaction with the nasal cavity and thoracic skeleton.

View Article and Find Full Text PDF

The facial differences between recent Pan troglodytes and Homo sapiens can be used as a proxy for the reduction of facial prognathism that happened during evolutionary transition between Australopithecines and early Homo. The projecting nasal morphology of Homo has been considered both a passive consequence of anatomical reorganization related to brain and integrated craniofacial evolution as well as an adaptation related to air-conditioning during physiological and behavioral shifts in human evolution. Yet, previous research suggested impaired air-conditioning in Homo challenging respiratory adaptations based on computational fluid dynamics (CFD) and airflow simulations.

View Article and Find Full Text PDF

Objectives: To investigate a possible relationship between altered nasal flow and chronic otitis media (COM) using computational fluid dynamics (CFD).

Study Design: Retrospective case series.

Methods: Retrospective cohort sample of CT scans from patients with COM and controls without COM to compare the results of various nasal airflow parameters determined by CFD between a group of patients with COM (N = 60) and a control group of subjects without any evidence of ear disease (N = 81).

View Article and Find Full Text PDF

Objectives: Several studies have analyzed the sexual dimorphism of the skeletal cranial airways. This study aimed to quantify the three-dimensional (3D) morphology of the soft tissues of the upper airways in a human population. We addressed hypotheses about morphological features related to respiratory and energetic aspects of nasal sexual dimorphism.

View Article and Find Full Text PDF

Annually, hundreds of thousands of surgical interventions to correct nasal airway obstruction are performed throughout the world. Recent studies have noted that a significant number of patients have persistent symptoms of nasal obstruction postoperatively. In the present work, we introduce a new methodology that raises the success rate of nasal cavity surgery.

View Article and Find Full Text PDF

Introduction: Computational fluid dynamics (CFD) is a mathematical tool to analyse airflow. We present a novel CFD software package to improve results following nasal surgery for obstruction.

Methods: A group of engineers in collaboration with otolaryngologists have developed a very intuitive CFD software package called MeComLand®, which uses the patient's cross-sectional (tomographic) images, thus showing in detail results originated by CFD such as airflow distributions, velocity profiles, pressure, or wall shear stress.

View Article and Find Full Text PDF