Publications by authors named "Manuel Boix-Chornet"

Sin3A/B is a master transcriptional scaffold and corepressor that plays an essential role in the regulation of gene transcription and maintenance of chromatin structure, and its inappropriate recruitment has been associated with aberrant gene silencing in cancer. Sin3A/B are highly related, large, multidomian proteins that interact with a wide variety of transcription factors and corepressor components, and we examined whether disruption of the function of a specific domain could lead to epigenetic reprogramming and derepression of specific subsets of genes. To this end, we selected the Sin3A/B-paired amphipathic alpha-helices (PAH2) domain based on its established role in mediating the effects of a relatively small number of transcription factors containing a PAH2-binding motif known as the Sin3 interaction domain (SID).

View Article and Find Full Text PDF

The retinoic acid receptor (RAR) alpha gene (RARA) encodes 2 major isoforms and mediates positive effects of all-trans retinoic acid (ATRA) on myelomonocytic differentiation. Expression of the ATRA-inducible (RARalpha2) isoform increases with myelomonocytic differentiation and appears to be down-regulated in many acute myeloid leukemia (AML) cell lines. Here, we demonstrate that relative to normal myeloid stem/progenitor cells, RARalpha2 expression is dramatically reduced in primary AML blasts.

View Article and Find Full Text PDF

The transcription factor Aiolos (also known as IKZF3), a member of the Ikaros family of zinc-finger proteins, plays an important role in the control of B lymphocyte differentiation and proliferation. Previously, multiple isoforms of Ikaros family members arising from differential splicing have been described and we now report a number of novel isoforms of Aiolos. It has been demonstrated that full-length Ikaros family isoforms localize to heterochromatin and that they can associate with complexes containing histone deacetylase (HDAC).

View Article and Find Full Text PDF

Disruption of histone acetylation patterns is a common feature of cancer cells, but very little is known about its genetic basis. We have identified truncating mutations in one of the primary human histone deacetylases, HDAC2, in sporadic carcinomas with microsatellite instability and in tumors arising in individuals with hereditary nonpolyposis colorectal cancer syndrome. The presence of the HDAC2 frameshift mutation causes a loss of HDAC2 protein expression and enzymatic activity and renders these cells more resistant to the usual antiproliferative and proapoptotic effects of histone deacetylase inhibitors.

View Article and Find Full Text PDF

Nuclear events such as chromatin condensation, DNA cleavage at internucleosomal sites, and histone release from chromatin are recognized as hallmarks of apoptosis. However, there is no complete understanding of the molecular events underlying these changes. It is likely that epigenetic changes such as DNA methylation and histone modifications that are involved in chromatin dynamics and structure are also involved in the nuclear events described.

View Article and Find Full Text PDF

Monozygous twins share a common genotype. However, most monozygotic twin pairs are not identical; several types of phenotypic discordance may be observed, such as differences in susceptibilities to disease and a wide range of anthropomorphic features. There are several possible explanations for these observations, but one is the existence of epigenetic differences.

View Article and Find Full Text PDF

CpG island hypermethylation and global genomic hypomethylation are common epigenetic features of cancer cells. Less attention has been focused on histone modifications in cancer cells. We characterized post-translational modifications to histone H4 in a comprehensive panel of normal tissues, cancer cell lines and primary tumors.

View Article and Find Full Text PDF