Publications by authors named "Manuel Arias-Estevez"

Article Synopsis
  • Terrestrial ecosystems can absorb atmospheric mercury (Hg), but wildfires can release it due to altered ecological stability.
  • This study analyzed sediment samples after a prescribed fire, measuring Hg concentrations in different size fractions and finding increased Hg levels post-fire.
  • Results showed that prescribed fires can lead to significant Hg mobilization, with the 0.5-2 mm sediment fraction contributing most, highlighting the need for caution when using such fires for wildfire prevention.
View Article and Find Full Text PDF

The presence of pharmaceuticals in agricultural soils, like amoxicillin (AMX) and ciprofloxacin (CIP), poses a significant environmental challenge with potential implications for ecosystems and human well-being. This study explores the simultaneous adsorption of AMX and CIP on crop soils and bio-adsorbents, focusing on competitive adsorption dynamics. Tests were conducted with varying pharmaceutical concentrations in six soils and three bio-adsorbents.

View Article and Find Full Text PDF

Antibiotics in the environment are considered emerging pollutants, with special relevance and concern due to the proliferation of antibiotic-resistant bacteria and genes. Therefore, finding ways to remediate antibiotics-contaminated soil and water through the use of bio-adsorbents is imperative. In this research, we investigate three by-products (hemp waste, oak ash, and mussel shell) as potential low-cost bio-adsorbents for the antibiotics Ciprofloxacin (CIP), Clarithromycin (CLA), and Trimethoprim (TRI), using batch-type and stirred flow chamber experiments to study their retention and release.

View Article and Find Full Text PDF

Adsorption is considered an interesting option for removing antibiotics from the environment because of its simple design, low cost, and potential efficiency. In this work we evaluated three by-products (pine bark, oak ash, and mussel shell) as bio-adsorbents for the antibiotic azithromycin (AZM). Furthermore, they were added at doses of 48 t ha to four different soils, then comparing AZM removal for soils with and without bio-adsorbents.

View Article and Find Full Text PDF

Here we addressed the capacity of distinct amendments to reduce arsenic (As), copper (Cu), selenium (Se) and zinc (Zn) associated risks and improve the biogeochemical functions of post-mining soil. To this, we examined nanoparticles (NPs) and/or biochar effects, combined with phytostabilization using Lolium perenne L. Soil samples were taken in a former metal mine surroundings.

View Article and Find Full Text PDF

Cork oak and pine bark, two of the most prolific byproducts of the European forestry sector, were assessed as biosorbents for eliminating potentially toxic elements (PTEs) from water-based solutions. Our research suggests that bioadsorption stands out as a viable and environmental eco-friendly technology, presenting a sustainable method for the extraction of PTEs from polluted water sources. This study aimed to evaluate and compare the efficiency of cork powder and pine bark powder as biosorbents.

View Article and Find Full Text PDF

Soils constitute the major reservoir of mercury (Hg) in terrestrial ecosystems, whose stability may be threatened by wildfires. This research attempts to look at the effect of prescribed fire on the presence of Hg in a shrubland ecosystem from NE Portugal, delving into its relationship with soil aggregate size and the molecular composition of soil organic matter (SOM). During the prescribed fire, on average 347 mg Hg ha were lost from the burnt aboveground biomass of shrubs and 263 mg Hg ha from the combustion of the soil organic horizon.

View Article and Find Full Text PDF

Agricultural nanotechnology has become a powerful tool to help crops and improve agricultural production in the context of a growing world population. However, its application can have some problems with the development of harvests, especially during germination. This review evaluates nanoparticles with essential (Cu, Fe, Ni and Zn) and non-essential (Ag and Ti) elements on plant germination.

View Article and Find Full Text PDF

Antibiotics pollution is a growing environmental issue, as high amounts of these compounds are found in soil, water and sediments. This work studies the adsorption/desorption of the macrolide antibiotic clarithromycin (CLA) for 17 agricultural soils with different edaphic characteristics. The research was carried out using batch-type experiments, with an additional assessment of the specific influence of pH for 6 of the soils.

View Article and Find Full Text PDF

Antibiotic consumption at high levels in both human and veterinary populations pose a risk to their eventual entry into the food chain and/or water bodies, which will adversely affect the health of living organisms. In this work, three materials from forestry and agro-food industries (pine bark, oak ash and mussel shell) were investigated as regards their potential use as bio-adsorbents in the retention of the antibiotics amoxicillin (AMX), ciprofloxacin (CIP) and trimethoprim (TMP). Batch adsorption/desorption tests were conducted, adding increasing concentrations of the pharmaceuticals individually (from 25 to 600 μmol L), reaching maximum adsorption capacities of ≈ 12000 μmol kg for the three antibiotics, with removal percentages of ≈ 100% for CIP, 98-99% adsorption for TMP onto pine bark, and 98-100% adsorption for AMX onto oak ash.

View Article and Find Full Text PDF

Climatic conditions have been shown as a major driver of the fate of Hg in forest ecosystems at a global scale, but less is known about climatic effects at shorter scales. This study assesses whether the concentration and pools of Hg in soils collected from seventeen Pinus pinaster stands describing a coastal-inland transect in SW Europe vary along a regional climatic gradient. In each stand, samples of the organic subhorizons (OL, OF + OH) and the mineral soil (up to 40 cm) were collected and some general physico-chemical properties and total Hg (THg) were analyzed.

View Article and Find Full Text PDF

Globally, cadmium (Cd) is one of the metals that causes the most significant problems of contamination in agricultural soils and toxicity in living organisms. In this study, the ability of three different nanoparticles (dose 3% /) (hydroxyapatite (HANPs), maghemite (MNPs), or zero-valent iron (FeNPs)) to decrease the availability of Cd in artificially contaminated agricultural soil was investigated. The effect of Cd and nanoparticles on germination and early growth of L.

View Article and Find Full Text PDF

Reducing the toxicity caused by antibiotics on bacterial communities in the soil is one of the great challenges of this century. For this, the effectiveness of amending the soil with different bioadsorbents such as crushed mussel shell (CMS), pine bark (PB) and biomass ash (BA), as well as combinations of them (CMS + PB and PB + BA) was studied at different doses (0 g kg to 48 g kg). Soil samples were spiked, separately, with increasing doses (0-2000 mg kg) of cefuroxime (CMX), amoxicillin (AMX), clarithromycin (CLA), azithromycin (AZI), ciprofloxacin (CIP) and trimethoprim (TMP).

View Article and Find Full Text PDF

Heavy metals from anthropogenic sources accumulate slowly but steadily, leading to high metal concentration levels in soil. However, the effect of each heavy metal on soil bacterial communities is usually assessed in laboratories by a single application of individually spiked metals. We evaluated the differences between single individual application and repeated individual applications of Cr, Cu, Ni, Pb, and Zn on bacterial communities, through pollution-induced community tolerance (PICT), using bacterial growth as the endpoint (H-leucine incorporation method).

View Article and Find Full Text PDF

Atmospheric mercury (Hg) is largely assimilated by vegetation and subsequently transferred to the soil by litterfall, which highlights the role of forests as one of the largest global Hg sinks within terrestrial ecosystems. We assessed the pool of Hg in the aboveground biomass (leaves, wood, bark, branches and twigs), the Hg deposition flux through litterfall over two years (by sorting fallen biomass in leaves, twigs, reproductive structures and miscellaneous) and its accumulation in the soil profile in a deciduous forest dominated by Betula alba from SW Europe. The total Hg pool in the aboveground birch biomass was in the range 532-683 mg ha, showing the following distribution by plant tissues: well-developed leaves (171 mg ha) > twigs (160 mg ha) > bark (159 mg ha) > bole wood (145 mg ha) > fine branches (25 mg ha) > thick branches (24 mg ha) > newly sprouted leaves (20 mg ha).

View Article and Find Full Text PDF

Vegetation and climate are critical in the biogeochemical cycle of Hg in forest ecosystems. The study assesses the influence of needle age and precipitation on the accumulation of Hg in needle biomass and its deposition by litterfall in thirty-one pine plantations spread throughout two biogeographical regions in SW Europe. Well-developed branches of Pinus pinaster were sampled and pine needles were classified according to 4 age classes (y, y, y, y).

View Article and Find Full Text PDF

In this research, the adsorption/desorption of the antibiotics doxycycline (DC), enrofloxacin (ENR), and sulfamethoxypyradazine (SMP) was studied in 6 agricultural soils with predominance of variable charge, both before and after removing organic matter by calcination. DC adsorption was high at acidic pH, and decreased at pH values above 8. Removal of organic matter with calcination caused just a slight decrease in adsorption, and even in some soils adsorption was similar to that in non-calcined samples.

View Article and Find Full Text PDF

Pollution-Induced Community Tolerance (PICT) is a helpful and sensitive methodology to evaluate the effect of metal pollution in soils using microorganisms as indicators. PICT was used to determine the increase of bacterial community tolerance to Cu, Ni, Pb and Zn (Δlog IC), and to assess the influence of soil properties on the development of bacterial community tolerance to Cu, Ni, Pb, and Zn. Soil samples showed a wide range of properties, such as pH (3.

View Article and Find Full Text PDF

This research is concerned with the adsorption and desorption of Cu and As(V) on/from different soils and by-products. Both contaminants may reach soils by the spreading of manure/slurries, wastewater, sewage sludge, or pesticides, and also due to pollution caused by mining and industrial activities. Different crop soils were sampled in A Limia (AL) and Sarria (S) (Galicia, NW Spain).

View Article and Find Full Text PDF

The current research focuses on the adsorption/desorption characteristics of the antibiotics ciprofloxacin (CIP) and trimethoprim (TRI) taking place in 17 agricultural soils, which are studied by means of batch-type experiments. The results show that adsorption was higher for CIP, with Freundlich K values ranging between 1150 and 5086 L µmol kg, while they were between 29 and 110 L µmol kg in the case of TRI. Other parameters, such as the Langmuir maximum adsorption capacity (q), as well as the K parameter in the linear model and also the adsorption percentages, follow the same trend as K.

View Article and Find Full Text PDF

The presence of emerging pollutants, and specifically antibiotics, in agricultural soils has increased notably in recent decades, causing growing concern as regards potential environmental and health issues. With this in mind, the current study focuses on evaluating the toxicity exerted by three antibiotics (amoxicillin, trimethoprim, and ciprofloxacin) on the growth of soil bacterial communities, when these pollutants are present at different doses, and considered in the short, medium, and long terms (1, 8 and 42 days of incubation). Specifically, the research was carried out in 12 agricultural soils having different physicochemical characteristics and was performed by means of the leucine (H) incorporation method.

View Article and Find Full Text PDF

In view of the environmental issues caused by antibiotics, this research studies competitive adsorption/desorption for tetracycline (TC) and sulfadiazine (SDZ) in agricultural soils. Competitive adsorption was studied in binary systems (adding equal concentrations of both antibiotics). In addition, it was compared with results from simple systems.

View Article and Find Full Text PDF

Sewage sludge as agricultural amendment is the main route of human-medicine antibiotics to enter soils. When reaching environmental compartments, these compounds can cause significant risks to human and ecological health. Specifically, the antibiotic amoxicillin (AMX) is highly used in medicine, and the fact that more than 80% of the total ingested is excreted increases the chances of causing serious environmental and public health problems.

View Article and Find Full Text PDF

The antibiotic amoxicillin (AMX) may reach soils and other environmental compartments as a pollutant, with potential to affect human and environmental health. To solve/minimize these hazards, it would be clearly interesting to develop effective and low-cost methods allowing the retention/removal of this compound. With these aspects in mind, this work focuses on studying the adsorption/desorption of AMX in different agricultural soils, with and without the amendment of three bio-adsorbents, specifically, pine bark, wood ash and mussel shell.

View Article and Find Full Text PDF

The fate of antibiotics reaching soils is a matter of concern, given its potential repercussions on public health and the environment. In this work, the potential bio-reduction of the antibiotic amoxicillin (AMX), affected by sorption and desorption, is studied for 17 soils with clearly different characteristics. To carry out these studies, batch-type tests were performed, adding increasing concentrations of AMX (0, 2.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongj2fpo41jptei57ajtde80me1t6md21m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once