Publications by authors named "Manuel Arcangeletti"

Cancer pain is a growing problem, especially with the substantial increase in cancer survival. Reports indicate that bone metastasis, whose primary symptom is bone pain, occurs in 65-75% of patients with advanced breast or prostate cancer. We optimized a preclinical model of cancer-induced bone pain (CIBP) involving the injection of Lewis Lung Carcinoma cells into the intramedullary space of the femur of C57BL/6 mice or transgenic mice on a C57BL/6 background.

View Article and Find Full Text PDF

The relationship between transcription and protein expression is complex. We identified polysome-associated RNA transcripts in the somata and central terminals of mouse sensory neurons in control, painful (plus nerve growth factor), and pain-free conditions (Nav1.7-null mice).

View Article and Find Full Text PDF

Drive from peripheral neurons is essential in almost all pain states, but pharmacological silencing of these neurons to effect analgesia has proved problematic. Reversible gene therapy using long-lived chemogenetic approaches is an appealing option. We used the genetically activated chloride channel PSAM-GlyR to examine pain pathways in mice.

View Article and Find Full Text PDF

Melzak and Wall's gate control theory proposed that innocuous input into the dorsal horn of the spinal cord represses pain-inducing nociceptive input. Here we show that input from proprioceptive parvalbumin-expressing sensory neurons tonically represses nociceptor activation within dorsal root ganglia. Deletion of parvalbumin-positive sensory neurons leads to enhanced nociceptor activity measured with GCaMP3, increased input into wide dynamic range neurons of the spinal cord and increased acute and spontaneous pain behaviour, as well as potentiated innocuous sensation.

View Article and Find Full Text PDF

Deletion of SCN9A encoding the voltage-gated sodium channel Na1.7 in humans leads to profound pain insensitivity and anosmia. Conditional deletion of Na1.

View Article and Find Full Text PDF

Cyclic nucleotide-gated (CNG) channels mediate transduction in several sensory neurons. These channels use the free energy of CNs' binding to open the pore, a process referred to as gating. CNG channels belong to the superfamily of voltage-gated channels, where the motion of the α-helix S6 controls gating in most of its members.

View Article and Find Full Text PDF
Article Synopsis
  • CNG ion channels are similar to K(+) channels but allow various monovalent cations to pass through without discrimination, showing permeability to some organic cations as well.
  • Research using electrophysiology, molecular dynamics simulations, and X-ray crystallography reveals that CNG channel pores are highly flexible, changing size when different cations are present.
  • The movement and conformations of specific amino acids in the channel, influenced by the type of ion and voltage, explain the channels' ability to link gating mechanisms with ionic permeation and their lack of selectivity.
View Article and Find Full Text PDF

Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating.

View Article and Find Full Text PDF

Key Points: Desensitization and inactivation provide a form of short-term memory controlling the firing patterns of excitable cells and adaptation in sensory systems. Unlike many of their cousin K(+) channels, cyclic nucleotide-gated (CNG) channels are thought not to desensitize or inactivate. Here we report that CNG channels do inactivate and that inactivation is controlled by extracellular protons.

View Article and Find Full Text PDF

In cyclic nucleotide-gated (CNGA1) channels, in the presence of symmetrical ionic conditions, current-voltage (I-V) relationship depends, in a complex way, on the radius of permeating ion. It has been suggested that both the pore and S4 helix contribute to the observed rectification. In the present manuscript, using tail and gating current measurements from homotetrameric CNGA1 channels expressed in Xenopus oocytes, we clarify and quantify the role of the pore and of the S4 helix.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionms7ujgsd0io8d672vn9lgn3lvdg6u13q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once